Digital collections are vastly expanding literary scholars’ field of view: instead of describing a few hundred well-known novels, we can now test our claims against corpora that include tens of thousands of works. But because this expansion of scope has also raised expectations, the question of representativeness is often discussed as if it were a weakness rather than a strength of digital methods. How can we ever produce a corpus complete and balanced enough to represent print culture accurately?
I think the question is wrongly posed, and I’d like to suggest an alternate frame. As I see it, the advantage of digital methods is that we never need to decide on a single model of representation. We can and should keep enlarging digital collections, to make them as inclusive as possible. But no matter how large our collections become, the logic of representation itself will always remain open to debate. For instance, men published more books than women in the eighteenth century. Would a corpus be correctly balanced if it reproduced those disproportions? Or would a better model of representation try to capture the demographic reality that there were roughly as many women as men? There’s something to be said for both views.
To take another example, Scott Weingart has pointed out that there’s a basic tension in text mining between measuring “what was written” and “what was read.” A corpus that contains one record for every title, dated to its year of first publication, would tend to emphasize “what was written.” Measuring “what was read” is harder: a perfect solution would require sales figures, reviews, and other kinds of evidence. But, as a quick stab at the problem, we could certainly measure “what was printed,” by including one record for every volume in a consortium of libraries like HathiTrust. If we do that, a frequently-reprinted work like Robinson Crusoe will carry about a hundred times more weight than a novel printed only once.
We’ll never create a single collection that perfectly balances all these considerations. But fortunately, we don’t need to: there’s nothing to prevent us from framing our inquiry instead as a comparative exploration of many different corpora balanced in different ways.
For instance, if we’re troubled by the difference between “what was written” and “what was read,” we can simply create two different collections — one limited to first editions, the other including reprints and duplicate copies. Neither collection is going to be a perfect mirror of print culture. Counting the volumes of a novel preserved in libraries is not the same thing as counting the number of its readers. But comparing these collections should nevertheless tell us whether the issue of popularity makes much difference for a given research question.
I suspect in many cases we’ll find that it makes little difference. For instance, in tracing the development of literary language, I got interested in the relative prominence of words that entered English before and after the Norman Conquest — and more specifically, in how that ratio changed over time in different genres. My first approach to this problem was based on a collection of 4,275 volumes that were, for the most part, limited to first editions (773 of these were prose fiction).
But I recognized that other scholars would have questions about the representativeness of my sample. So I spent the last year wrestling with 470,000 volumes from HathiTrust; correcting their OCR and using classification algorithms to separate fiction from the rest of the collection. This produced a collection with a fundamentally different structure — where a popular work of fiction could be represented by dozens or scores of reprints scattered across the timeline. What difference did that make to the result? (click through to enlarge) The same question posed to two different collections. 773 hand-selected first editions on the left; on the right, 47,549 volumes, including many translations and reprints. Yearly ratios are plotted rather than individual works.
It made almost no difference. The scatterplots look different, of course, because the hand-selected collection (on the left) is relatively stable in size across the timespan, and has a consistent kind of noisiness, whereas the HathiTrust collection (on the right) gets so huge in the nineteenth century that noise almost disappears. But the trend lines are broadly comparable, although the collections were created in completely different ways and rely on incompatible theories of representation.
I don’t regret the year I spent getting a binocular perspective on this question. Although in this case changing the corpus made little difference to the result, I’m sure there are other questions where it will make a difference. And we’ll want to consider as many different models of representation as we can. I’ve been gathering metadata about gender, for instance, so that I can ask what difference gender makes to a given question; I’d also like to have metadata about the ethnicity and national origin of authors.
But the broader point I want to make here is that people pursuing digital research don’t need to agree on a theory of representation in order to cooperate.
If you’re designing a shared syllabus or co-editing an anthology, I suppose you do need to agree in advance about the kind of representativeness you’re aiming to produce. Space is limited; tradeoffs have to be made; you can only select one set of works.
But in digital research, there’s no reason why we should ever have to make up our minds about a model of representativeness, let alone reach consensus. The number of works we can select for discussion is not limited. So we don’t need to imagine that we’re seeking a correspondence between the reality of the past and any set of works. Instead, we can look at the past from many different angles and ask how it’s transformed by different perspectives. We can look at all the digitized volumes we have — and then at a subset of works that were widely reprinted — and then at another subset of works published in India — and then at three or four works selected as case studies for close reading. These different approaches will produce different pictures of the past, to be sure. But nothing compels us to make a final choice among them.
People new to text mining are often disillusioned when they figure out how it’s actually done — which is still, in large part, by counting words. They’re willing to believe that computers have developed some clever strategy for finding patterns in language — but think “surely it’s something better than that?”
Uneasiness with mere word-counting remains strong even in researchers familiar with statistical methods, and makes us search restlessly for something better than “words” on which to apply them. Maybe if we stemmed words to make them more like concepts? Or parsed sentences? In my case, this impulse made me spend a lot of time mining two- and three-word phrases. Nothing wrong with any of that. These are all good ideas, but they may not be quite as essential as we imagine.
I suspect the core problem is that most of us learned language a long time ago, and have forgotten how much leverage it provides. We can still recognize that syntax might be worthy of analysis — because it’s elusive enough to be interesting. But the basic phenomenon of the “word” seems embarrassingly crude.
Baby, 1949, from the Galt Museum, on Creative Commons.We need to remember that words are actually features of a very, very high-level kind. As a thought experiment, I find it useful to compare text mining to image processing. Take the picture on the right. It’s pretty hard to teach a computer to recognize that this is a picture that contains a face. To recognize that it contains “sitting” and a “baby” would be extraordinarily impressive. And it’s probably, at present, impossible to figure out that it contains a “blanket.”
Working with text is like working with a video where every element of every frame has already been tagged, not only with nouns but with attributes and actions. If we actually had those tags on an actual video collection, I think we’d recognize it as an enormously valuable archive. The opportunities for statistical analysis are obvious! We have trouble recognizing the same opportunities when they present themselves in text, because we take the strengths of text for granted and only notice what gets lost in the analysis. So we ignore all those free tags on every page and ask ourselves, “How will we know which tags are connected? And how will we know which clauses are subjunctive?”
Natural language processing is going to be important for all kinds of reasons — among them, it can eventually tell us which clauses are subjunctive (should we wish to know). But I think it’s a mistake to imagine that text mining is now in a sort of crude infancy, whose real possibilities will only be revealed after NLP matures. Wordcounts are amazing! An enormous amount of our cultural history is already tagged, in a detailed way that is also easy to analyze statistically. That’s not an embarrassingly babyish method: it’s a huge and obvious research opportunity.
In recent months I’ve had several conversations with colleagues who are friendly to digital methods but wary of claims about novelty that seem overstated. They believe that text mining can add a new level of precision to our accounts of literary history, or add a new twist to an existing debate. They just don’t think it’s plausible that quantification will uncover fundamentally new evidence, or patterns we didn’t previously expect.
If I understand my friends’ skepticism correctly, it’s founded less on a narrow objection to text mining than on a basic premise about the nature of literary study. And where the history of the discipline is concerned, they’re arguably right. In fact, the discipline of literary studies has not usually advanced by uncovering unexpected evidence. As grad students, that’s not what we were taught to aim for. Instead we learned that the discipline moves forward dialectically. You take something that people already believe and “push against” it, or “critique” it, or “complicate” it. You don’t make discoveries in literary study, or if you do they’re likely to be minor — a lost letter from Byron to his tailor. Instead of making discoveries, you make interventions — a telling word.
The broad contours of our discipline are already known, so nothing can grow without displacing something else.
So much flows from this assumption. If we’re not aiming for discovery, if the broad contours of literary history are already known, then methodological conversation can only be a zero-sum game. That’s why, when I say “digital methods don’t have to displace traditional scholarship,” my colleagues nod politely but assume it’s insincere happy talk. They know that in reality, the broad contours of our discipline are already known, and anything within those boundaries can only grow by displacing something else.
These are the assumptions I was also working with until about three years ago. But a couple of years of mucking about in digital archives have convinced me that the broad contours of literary history are not in fact well understood.
For instance, I just taught a course called Introduction to Fiction, and as part of that course I talk about the importance of point of view. You can characterize point of view in a lot of subtle ways, but the initial, basic division is between first-person and third-person perspectives.
Suppose some student had asked the obvious question, “Which point of view is more common? Is fiction mostly written in the first or third person? And how long has it been that way?” Fortunately undergrads don’t ask questions like that, because I couldn’t have answered.
I have a suspicion that first person is now used more often in literary fiction than in novels for a mass market, but if you ask me to defend that — I can’t. If you ask me how long it’s been that way — no clue. I’ve got a Ph.D in this field, but I don’t know the history of a basic formal device. Now, I’m not totally ignorant. I can say what everyone else says: “Jane Austen perfected free indirect discourse. Henry James. Focalizing character. James Joyce. Stream of consciousness. Etc.” And three years ago that might have seemed enough, because the bigger, simpler question was obviously unanswerable and I wouldn’t have bothered to pose it.
But recently I’ve realized that this question is answerable. We’ve got large digital archives, so we could in principle figure out how the proportions of first- and third-person narration have changed over time.
You might reasonably expect me to answer that question now. If so, you underestimate my commitment to the larger thesis here: that we don’t understand literary history. I will eventually share some new evidence about the history of narration. But first I want to stress that I’m not in a position to fully answer the question I’ve posed. For three reasons:
1) Our digital collections are incomplete. I’m working with a collection of about 700,000 18th and 19th-century volumes drawn from HathiTrust.
That’s a lot. But it’s not everything that was written in the English language, or even everything that was published.
2) This is work in progress. For instance, I’ve cleaned and organized the non-serial part of the collection (about 470,000 volumes), but I haven’t started on the periodicals yet. Also, at the moment I’m counting volumes rather than titles, so if a book was often reprinted I count it multiple times. (This could be a feature or a bug depending on your goals.)
3) Most importantly, we can’t answer the question because we don’t fully understand the terms we’re working with. After all, what is “first-person narration?”
The truth is that the first person comes in a lot of different forms. There are cases where the narrator is also the protagonist. That’s pretty straightforward. Then epistolary novels. Then there are cases where the narrator is anonymous — and not a participant in the action — but sometimes refers to herself as I. Even Jane Austen’s narrator sometimes says “I.” Henry Fielding’s narrator does it a lot more. Should we simply say this is third-person narration, or should we count it as a move in the direction of first? Then, what are we going to do about books like Bleak House? Alternating chapters of first and third person. Maybe we call that 50% first person? — or do we assign it to a separate category altogether? What about a novel like Dracula, where journals and letters are interspersed with news clippings?
Suppose we tried to crowdsource this problem. We get a big team together and decide to go through half a million volumes, first of all to identify the ones that are fiction, and secondly, if a volume is fiction, to categorize the point of view. Clearly, it’s going to be hard to come to agreement on categories. We might get halfway through the crowdsourcing process, discover a new category, and have to go back to the drawing board.
Notice that I haven’t mentioned computers at all yet. This is not a problem created by computers, because they “only understand binary logic.” It’s a problem created by us. Distant reading is hard, fundamentally, because human beings don’t agree on a shared set of categories. Franco Moretti has a well-known list of genres, for instance, in Graphs, Maps, Trees. But that list doesn’t represent an achieved consensus. Moretti separates the eighteenth-century gothic novel from the late-nineteenth-century “imperial gothic.” But for other critics, those are two parts of the same genre. For yet other critics, the “gothic” isn’t a genre at all; it’s a mode like tragedy or satire, which is why gothic elements can pervade a bunch of different genres.
This is the darkest moment of this post. It may seem that there’s no hope for literary historians. How can we ever know anything if we can’t even agree on the definitions of basic concepts like genre and point of view? But here’s the crucial twist — and the real center of what I want to say. The blurriness of literary categories is exactly why it’s helpful to use computers for distant reading. With an algorithm, we can classify 500,000 volumes provisionally. Try defining point of view one way, and see what you get. If someone else disagrees, change the definition; you can run the algorithm again overnight. You can’t re-run a crowdsourced cataloguing project on 500,000 volumes overnight.
Second, algorithms make it easier to treat categories as plural and continuous. Although Star Trek teaches us otherwise, computers do not start to stammer and emit smoke if you tell them that an object belongs in two different categories at once. Instead of sorting texts into category A or category B, we can assign degrees of membership to multiple categories. As many as we want. So The Moonstone can be 80% similar to a sensation novel and 50% similar to an imperial gothic, and it’s not a problem. Of course critics are still going to disagree about individual cases. And we don’t have to pretend that these estimates are precise characterizations of The Moonstone. The point is that an algorithm can give us a starting point for discussion, by rapidly mapping a large collection in a consistent but flexibly continuous way.
Then we can ask, Does the gothic often overlap with the sensation novel? What other genres does it overlap with? Even if the boundaries are blurry, and critics disagree about every individual case — even if we don’t have a perfect definition of the term “genre” itself — we’ve now got a map, and we can start talking about the relations between regions of the map.
Can we actually do this? Can we use computers to map things like genre and point of view? Yes, to coin a phrase, we can. The truth is that you can learn a lot about a document just by looking at word frequency. That’s how search engines work, that’s how spam gets filtered out of your e-mail; it’s a well-developed technology. The Stanford Literary Lab suggested a couple of years ago that it would probably work for literary genres as well (see Pamphlet 1), and Matt Jockers has more detailed work forthcoming on genre and diction in Macroanalysis.
There are basically three steps to the process. First, get a training set of a thousand or so examples and tag the categories you want to recognize: poetry or prose, fiction or nonfiction, first- or third-person narration. Then, identify features (usually words) that turn out to provide useful clues about those categories. There are a lot of ways of doing this automatically. Personally, I use a Wilcoxon test to identify words that are consistently common or uncommon in one class relative to others. Finally, train classifiers using those features. I use what’s known as an “ensemble” strategy where you train multiple classifiers and they all contribute to the final result. Each of the classifiers individually uses an algorithm called “naive Bayes,” which I’m not going to explain in detail here; let’s just say that collectively, as a group, they’re a little less “naive” than they are individually — because they’re each relying on slightly different sets of clues.
Confusion matrix from an ensemble of naive Bayes classifiers. (432 test documents held out from a larger sample of 1356.)
How accurate does this end up being? This confusion matrix gives you a sense. Let me underline that this is work in progress. If I were presenting finished results I would need to run this multiple times and give you an average value. But these are typical results. Here I’ve got a corpus of thirteen hundred nineteenth-century volumes. I train a set of classifiers on two-thirds of the corpus, and then test it by using it to classify the other third of the corpus which it hasn’t yet seen. That’s what I mean by saying 432 documents were “held out.” To make the accuracy calculations simple here, I’ve treated these categories as if they were exclusive, but in the long run, we don’t have to do that: documents can belong to more than one at once.
These results are pretty good, but that’s partly because this test corpus didn’t have a lot of miscellaneous collected works in it. In reality you see a lot of volumes that are a mosaic of different genres — the collected poems and plays of so-and-so, prefaced by a prose life of the author, with an index at the back. Obviously if you try to classify that volume as a single unit, it’s going to be a muddle. But I think it’s not going to be hard to use genre classification itself to segment volumes, so that you get the introduction, and the plays, and the lyric poetry sorted out as separate documents. I haven’t done that yet, but it’s the next thing on my agenda.
One complication I have already handled is historical change. Following up a hint from Michael Witmore, I’ve found that it’s useful to train different classifiers for different historical periods. Then when you get an uncategorized document, you can have each classifier make a prediction, and weight those predictions based on the date of the document.
So what have I found? First of all, here’s the absolute number of volumes I was able to identify as fiction in HathiTrust’s collection of eighteenth and nineteenth-century English-language books. Instead of plotting individual years, I’ve plotted five-year segments of the timeline. The increase, of course, is partly just an absolute increase in the number of books published.
But it’s also an increase specifically in fiction. Here I’ve graphed the number of volumes of fiction divided by the total number of volumes in the collection. The proportion of fiction increases in a straightforward linear way. From 1700-1704, when fiction is only about 5% of the collection, to 1895-99, when it’s 25%. People better-versed in book history may already have known that this was a linear trend, but I was a bit surprised. (I should note that I may be slightly underestimating the real numbers before 1750, for reasons explained in the fine print to the earlier graph — basically, it’s hard for the classifier to find examples of a class that is very rare.)
Features consistently more common in first- or third-person narration, ranked by Mann-Whitney-Wilcoxon rho.
What about the question we started with — first-person narration? I approach this the same way I approached genre classification. I trained a classifier on 290 texts that were clearly dominated by first- or third-person narration, and used a Wilcoxon test to select features that are consistently more common in one set or in the other.
Now, it might seem obvious what these features are going to be: obviously, we would expect first-person and third-person pronouns to be the most important signal. But I’m allowing the classifier to include whatever features it in practice finds. For instance, terms for domestic relationships like “daughter” and “husband” and the relative pronouns “whose” and “whom” are also consistently more common in third-person contexts, and oddly, numbers seem more common in first-person contexts. I don’t know why that is yet; this is work in progress and there’s more exploration to do. But for right now I haven’t second-guessed the classifier; I’ve used the top sixteen features in both lists whether they “make sense” or not.
And this is what I get. The classifier predicts each volume’s probability of belonging to the class “first person.” That can be anywhere between 0 and 1, and it’s often in the middle (Bleak House, for instance, is 0.54). I’ve averaged those values for each five-year interval. I’ve also dropped the first twenty years of the eighteenth century, because the sample size was so low there that I’m not confident it’s meaningful.
Now, there’s a lot more variation in the eighteenth century than in the nineteenth century, partly because the sample size is smaller. But even with that variation it’s clear that there’s significantly more first-person narration in the eighteenth century. About half of eighteenth-century fiction is first-person, and in the nineteenth century that drops down to about a quarter. That’s not something I anticipated. I expected that there might be a gradual decline in the amount of first-person narration, but I didn’t expect this clear and relatively sudden moment of transition. Obviously when you see something you don’t expect, the first question you ask is, could something be wrong with the data? But I can’t see a source of error here. I’ve cleaned up most of the predictable OCR errors in the corpus, and there aren’t more medial s’s in one list than in the other anyway.
And perhaps this picture is after all consistent with our expectations. Eleanor Courtemanche points out that the timing of the shift to third person is consistent with Ian Watt’s account of the development of omniscience (as exemplified, for instance, in Austen). In a quick twitter poll I carried out before announcing the result, Jonathan Hope did predict that there would be a shift from first-person to third-person dominance, though he expected it to be more gradual. Amanda French may have gotten the story up to 1810 exactly right, although she expected first-person to recover in the nineteenth century. I expected a gradual decline of first-person to around 1810, and then a gradual recovery — so I seem to have been completely wrong.
The ratio between raw counts of first- and third-person pronouns in fiction.
Much more could be said about this result. You could decide that I’m wrong to let my classifier use things like numbers and relative pronouns as clues about point of view; we could restrict it just to counting personal pronouns. (That won’t change the result very significantly, as you can see in the illustration on the right — which also, incidentally, shows what happens in those first twenty years of the eighteenth century.) But we could refine the method in many other ways. We could exclude pronouns in direct discourse. We could break out epistolary narratives as a separate category.
All of these things should be tried. I’m explicitly not claiming to have solved this problem yet. Remember, the thesis of this talk is that we don’t understand literary history. In fact, I think the point of posing these questions on a large scale is partly to discover how slippery they are. I realize that to many people that will seem like a reason not to project literary categories onto a macroscopic scale. It’s going to be a mess, so — just don’t go there. But I think the mess is the reason to go there. The point is not that computers are going to give us perfect knowledge, but that we’ll discover how much we don’t know.
For instance, I haven’t figured out yet why numbers are common in first-person narrative, but I suspect it might be because there’s a persistent affinity with travel literature. As we follow up leads like that we may discover that we don’t understand point of view itself as well as we assume.
It’s this kind of complexity that will ultimately make classification interesting. It’s not just about sorting things into categories, but about identifying the places where a category breaks down or has changed over time. I would draw an analogy here to a paper on “Gender in Twitter” recently published by a group of linguists. They used machine learning to show that there are not two but many styles of gender performance on Twitter. I think we’ll discover something similar as we explore categories like point of view and genre. We may start out trying to recognize known categories, like first-person narration. But when you sort a large collection into categories, the collection eventually pushes back on your categories as much as the categories illuminate the collection.
Acknowledgments: This research was supported by the Andrew W. Mellon Foundation through “Expanding SEASR Services” and “The Uses of Scale in Literary Study.” Loretta Auvil, Mike Black, and Boris Capitanu helped develop resources for normalizing 18/19c OCR, many of which are public at usesofscale.com. Jordan Sellers developed the initial training corpus of 19c documents categorized by genre.
Of all our literary-historical narratives it is the history of criticism itself that seems most wedded to a stodgy history-of-ideas approach—narrating change through a succession of stars or contending schools. While scholars like John Guillory and Gerald Graff have produced subtler models of disciplinary history, we could still do more to complicate the narratives that organize our discipline’s understanding of itself.
A browsable network based on Underwood's model of PMLA. Click through, then mouse over or click on individual topics.The archive of scholarship is also, unlike many twentieth-century archives, digitized and available for “distant reading.” Much of what we need is available through JSTOR’s Data for Research API. So last summer it occurred to a group of us that topic modeling PMLA might provide a new perspective on the history of literary studies. Although Goldstone and Underwood are writing this post, the impetus for the project also came from Natalia Cecire, Brian Croxall, and Roger Whitson, who may do deeper dives into specific aspects of this archive in the near future.
Topic modeling is a technique that automatically identifies groups of words that tend to occur together in a large collection of documents. It was developed about a decade ago by David Blei among others. Underwood has a blog post explaining topic modeling, and you can find a practical introduction to the technique at the Programming Historian. Jonathan Goodwin has explained how it can be applied to the word-frequency data you get from JSTOR.
Obviously, PMLA is not an adequate synecdoche for literary studies. But, as a generalist journal with a long history, it makes a useful test case to assess the value of topic modeling for a history of the discipline.
Goldstone and Underwood each independently produced several different models of PMLA, using different software, stopword lists, and numbers of topics. Our results overlapped in places and diverged in places. But we’ve reached a shared sense that topic modeling can enrich the history of literary scholarship by revealing trends that are presently invisible.
What is a topic?
A “topic model” assigns every word in every document to one of a given number of topics. Every document is modeled as a mixture of topics in different proportions. A topic, in turn, is a distribution of words—a model of how likely given words are to co-occur in a document. The algorithm (called LDA) knows nothing “meta” about the articles (when they were published, say), and it knows nothing about the order of words in a given document.
This is a picture of 5940 articles from PMLA, showing the changing presence of each of 100 "topics" in PMLA over time. (Click through to enlarge; a longer list of topic keywords is here.) For example, the most probable words in the topic arbitrarily numbered 59 in the model visualized above are, in descending order:
che gli piu nel lo suo sua sono io delle perche questo quando ogni mio quella loro cosi dei
This is not a “topic” in the sense of a theme or a rhetorical convention. What these words have in common is simply that they’re basic Italian words, which appear together whenever an extended Italian text occurs. And this is the point: a “topic” is neither more nor less than a pattern of co-occurring words.
Nonetheless, a topic like topic 59 does tell us about the history of PMLA. The articles where this topic achieved its highest proportion were:
Antonio Illiano, “Momenti e problemi di critica pirandelliana: L’umorismo, Pirandello e Croce, Pirandello e Tilgher,” PMLA 83 no. 1 (1968): pp. 135-143
Domenico Vittorini, “I Dialogi ad Petrum Histrum di Leonardo Bruni Aretino (Per la Storia del Gusto Nell’Italia del Secolo XV),” PMLA 55 no. 3 (1940): pp. 714-720
Vincent Luciani, “Il Guicciardini E La Spagna,” PMLA 56 no. 4 (1941): pp. 992-1006
And here’s a plot of the changing proportions of this topic over time, showing moving 1-year and 5-year averages:
We see something about PMLA that is worth remembering for the history of criticism, namely, that it has embedded Italian less and less frequently in its language since midcentury. (The model shows that the same thing is true of French and German.)
What can topics tell us about the history of theory?
Of course a topic can also be a subject category—modeling PMLA, we have found topics that are primarily “about Beowulf” or “about music.” Or a topic can be a group of words that tend to co-occur because they’re associated with a particular critical approach.
Here, for instance, we have a topic from Underwood’s 150-topic model associated with discussions of pattern and structure in literature. We can characterize it by listing words that occur more commonly in the topic than elsewhere, or by graphing the frequency of the topic over time, or by listing a few articles where it’s especially salient.
At first glance this topic might seem to fit neatly into a familiar story about critical history. We know that there was a mid-twentieth-century critical movement called “structuralism,” and the prominence of “structure” here might suggest that we’re looking at the rise and fall of that movement. In part, perhaps, we are. But the articles where this topic is most prominent are not specifically “structuralist.” In the top four articles, Ferdinand de Saussure, Claude Lévi-Strauss, and Northrop Frye are nowhere in evidence. Instead these articles appeal to general notions of symmetry, or connect literary patterns to Neoplatonism and Renaissance numerology.
By forcing us to attend to concrete linguistic practice, topic modeling gives us a chance to bracket our received assumptions about the connections between concepts. While there is a distinct mid-century vogue for structure, it does not seem strongly associated with the concepts that are supposed to have motivated it (myth, kinship, language, archetype). And it begins in the 1940s, a decade or more before “structuralism” is supposed to have become widespread in literary studies. We might be tempted to characterize the earlier part of this trend as “New Critical interest in formal unity” and the latter part of it as “structuralism.” But the dividing line between those rationales for emphasizing pattern is not evident in critical vocabulary (at least not at this scale of analysis).
This evidence doesn’t necessarily disprove theses about the history of structuralism. Topic modeling might not reveal varying “rationales” for using a word even if those rationales did vary. The strictly linguistic character of this technique is a limitation as well as a strength: it’s not designed to reveal motivation or conflict. But since our histories of criticism are already very intellectual and agonistic, foregrounding the conscious beliefs of contending critical “schools,” topic modeling may offer a useful corrective. This technique can reveal shifts of emphasis that are more gradual and less conscious than the ones we tend to celebrate.
It may even reveal shifts of emphasis of which we were entirely unaware. “Structure” is a familiar critical theme, but what are we to make of this?
A fuller list of terms included in this topic would include “character”, “fact,” “choice,” “effect,” and “conflict.” Reading some of the articles where the topic is prominent, it appears that in this topic “point” is rarely the sort of point one makes in an argument. Instead it’s a moment in a literary work (e.g., “at the point where the rain occurs,” in Robert apRoberts 379). Apparently, critics in the 1960s developed a habit of describing literature in terms of problems, questions, and significant moments of action or choice; the habit intensified through the early 1980s and then declined. This habit may not have a name; it may not line up neatly with any recognizable school of thought. But it’s a fact about critical history worth knowing.
Note that this concern with problem-situations is embodied in common words like “way” and “cannot” as well as more legible, abstract terms. Since common words are often difficult to interpret, it can be tempting to exclude them from the modeling process. It’s true that a word like “the” isn’t likely to reveal much. But subtle, interesting rhetorical habits can be encoded in common words. (E.g. “itself” is especially common in late-20c theoretical topics.)
We don’t imagine that this brief blog post has significantly contributed to the history of criticism. But we do want to suggest that topic modeling could be a useful resource for that project. It has the potential to reveal shifts in critical vocabulary that aren’t well described, and that don’t fit our received assumptions about the history of the discipline.
Why browse topics as a network?
The fact that a word is prominent in topic A doesn’t prevent it from also being prominent in topic B. So certain generalizations we might make about an individual topic (for instance, that Italian words decline in frequency after midcentury) will be true only if there’s not some other “Italian” topic out there, picking up where the first one left off.
For that reason, interpreters really need to survey a topic model as a whole, instead of considering single topics in isolation. But how can you browse a whole topic model? We’ve chosen relatively small numbers of topics, but it would not be unreasonable to divide literary scholarship into, say, 500 topics. Information overload becomes a problem.
A browsable image map of 150 topics from PMLA. After you click through you can mouseover (or click) individual topics for more information.We’ve found network graphs useful here. Click on the image of the network on the right to browse Underwood’s 150-topic model. The size of each node (roughly) indicates the number of words in the topic; color indicates the average date of words. (Blue topics are older; yellow topics are more recent.) Topics are linked to each other if they tend to appear in the same articles. Topics have been labeled with their most salient word—unless that word was already taken for another topic, or seemed misleading. Mousing over a topic reveals a list of words associated with it; with most topics it’s also possible to click through for more information.
The structure of the network makes a loose kind of sense. Topics in French and German form separate networks floating free of the main English structure. Recent topics tend to cluster at the bottom of the page. And at the bottom, historical and pedagogical topics tend to be on the left, while formal, phenomenological, and aesthetic categories tend to be on the right.
But while it’s a little eerie to see patterns like this emerge automatically, we don’t advise readers to take the network structure too seriously. A topic model isn’t a network, and mapping one onto a network can be misleading. For instance, topics that are physically distant from each other in this visualization are not necessarily unrelated. Connections below a certain threshold go unrepresented.
Goldstone’s 100-topic model of PMLA; click through to enlarge.Moreover, as you can see by comparing illustrations in this post, a little fiddling with dials can turn the same data into networks with rather different shapes. It’s probably best to view network visualization as a convenience. It may help readers browse a model by loosely organizing topics—but there can be other equally valid ways to organize the same material.
How did our models differ?
The two models we’ve examined so far in this post differ in several ways at once. They’re based on different spans of PMLA‘s print run (1890–1999 and 1924–2006). They were produced with different software. Perhaps most importantly, we chose different numbers of topics (100 and 150).
But the models we’re presenting are only samples. Goldstone and Underwood each produced several models of PMLA, changing one variable at a time, and we have made some closer apples-to-apples comparisons.
Broadly, the conclusion we’ve reached is that there’s both a great deal of fluidity and a great deal of consistency in this process. The algorithm has to estimate parameters that are impossible to calculate exactly. So the results you get will be slightly different every time. If you run the algorithm on the same corpus with the same number of topics, the changes tend to be fairly minor. But if you change the number of topics, you can get results that look substantially different.
On the other hand, to say that two models “look substantially different” isn’t to say that they’re incompatible. A jigsaw puzzle cut into 100 pieces looks different from one with 150 pieces. If you examine them piece by piece, no two pieces are the same—but once you put them together you’re looking at the same picture. In practice, there was a lot of overlap between our models; on the older end of the spectrum you often see a topic like “evidence fact,” while the newer end includes topics that foreground narrative, rhetoric, and gender. Some of the more surprising details turned out to be consistent as well. For instance, you might expect the topic “literary literature” to skew toward the older end of the print run. But in fact this is a relatively recent topic in both of our models, associated with discussion of canonicity. (Perhaps the owl of Minerva flies only at dusk?)
Contrasting models: a short example
While some topics look roughly the same in all of our models, it’s not always possible to identify close correlates of that sort. As you vary the overall number of topics, some topics seem to simply disappear. Where do they go? For example, there is no exact counterpart in Goldstone’s model to that “structure” topic in Underwood’s model. Does that mean it is a figment? Underwood isolated the following article as the most prominent exemplar:
Robert E. Burkhart, The Structure of Wuthering Heights, Letter to the Editor, PMLA 87 no. 1 (1972): 104–5. (Incidentally, jstor has miscategorized this as a “full-length article.”)
Goldstone’s model puts more than half of Burkhart’s comment in three topics:
0.24 topic 38 time experience reality work sense form present point world human process structure concept individual reader meaning order real relationship
0.13 topic 46 novels fiction poe gothic cooper characters richardson romance narrator story novelist reader plot novelists character reade hero heroine drf
0.12 topic 13 point reader question interpretation meaning make reading view sense argument words word problem makes evidence read clear text readers
The other prominent documents in Underwood’s 109 are connected to similar topics in Goldstone’s model. The keywords for Goldstone’s topic 38, the top topic here, immediately suggest an affinity with Underwood’s topic 109. Now compare the time course of Goldstone’s 38 with Underwood’s 109 (the latter is above):
It is reasonable to infer that some portion of the words in Underwood’s “structure” topic are absorbed in Goldstone’s “time experience” topic. But “time experience reality work sense” looks less like vocabulary for describing form (although “form” and “structure” are included in it, further down the list; cf. the top words for all 100 topics), and more like vocabulary for talking about experience in generalized ways—as is also suggested by the titles of some articles in which that topic is substantially present:
“The Vanishing Subject: Empirical Psychology and the Modern Novel”
“Metacommentary”
“Toward a Modern Humanism”
“Wordsworth’s Inscrutable Workmanship and the Emblems of Reality”
This version of the topic is no less “right” or “wrong” than the one in Underwood’s model. They both reveal the same underlying evidence of word use, segmented in different but overlapping ways. Instead of focusing our vision on affinities between “form” and “structure”, Goldstone’s 100-topic model shows a broader connection between the critical vocabulary of form and structure and the keywords of “humanistic” reflection on experience.
The most striking contrast to these postwar themes is provided by a topic which dominates in the prewar period, then gives way before “time experience” takes hold. Here are box plots by ten-year intervals of the proportions of another topic, Goldstone’s topic 40, in PMLA articles:
Underwood’s model shows a similar cluster of topics centering on questions of evidence and textual documentation, which similarly decrease in frequency. The language of PMLA has shown a consistently declining interest in “evidence found fact” in the era of the postwar research university.
So any given topic model of a corpus is not definitive. Each variation in the modeling parameters can produce a new model. But although topic models vary, models of the same corpus remain fundamentally consistent with each other.
Using LDA as evidence
It’s true that a “topic model” is simply a model of how often words occur together in a corpus. But information of that kind has a deeper significance than we might at first assume. A topic model doesn’t just show you what people are writing about (a list of “topics” in our ordinary sense of the word). It can also show you how they’re writing. And that “how” seems to us a strong clue to social affinities—perhaps especially for scholars, who often identify with a methodology or critical vocabulary. To put this another way, topic modeling can identify discourses as well as subject categories and embedded languages. Naturally we also need other kinds of evidence to produce a history of the discipline, including social and institutional evidence that may not be fully manifest in discourse. But the evidence of topic modeling should be taken seriously.
As you change the number of topics (and other parameters), models provide different pictures of the same underlying collection. But this doesn’t mean that topic modeling is an indeterminate process, unreliable as evidence. All of those pictures will be valid. They are taken (so to speak) at different distances, and with different levels of granularity. But they’re all pictures of the same evidence and are by definition compatible. Different models may support different interpretations of the evidence, but not interpretations that absolutely conflict. Instead the multiplicity of models presents us with a familiar choice between “lumping” or “splitting” cultural phenomena—a choice where we have long known that multiple levels of analysis can coexist. This multiplicity of perspective should be understood as a strength rather than a limitation of the technique; it is part of the reason why an analysis using topic modeling can afford a richly detailed picture of an archive like PMLA.
Appendix: How did we actually do this?
The PMLA data obtained from JSTOR was independently processed by Goldstone and Underwood for their different LDA tools. This created some quantitative subtleties that we’ve saved for this appendix to keep this post accessible to a broad audience. If you read closely, you’ll notice that we sometimes talk about the “probability” of a term in a topic, and sometimes about its “salience.” Goldstone used MALLET for topic modeling, whereas Underwood used his own Java implementation of LDA. As a result, we also used slightly different formulas for ranking words within a topic. MALLET reports the raw probability of terms in each topic, whereas Underwood’s code uses a slightly more complex formula for term salience drawn from Blei & Lafferty (2009). In practice, this did not make a huge difference.
MALLET also has a “hyperparameter optimization” option which Goldstone’s 100-topic model above made use of. Before you run screaming, “hyperparameters” are just dials that control how much fuzziness is allowed in a topic’s distribution across words (beta) or across documents (alpha). Allowing alpha to vary allows greater differentiation between the sizes of large topics (often with common words), and smaller (often more specialized) topics. (See “Why Priors Matter,” Wallach, Mimno, and McCallum, 2009.) In any event, Goldstone’s 100-topic model used hyperparameter optimization; Underwood’s 150-topic model did not. A comparison with several other models suggests that the difference between symmetric and asymmetric (optimized) alpha parameters explains much of the difference between their structures when visualized as networks.
Goldstone’s processing scripts are online in a github repository. The same repository includes R code for making the plots from Goldstone’s model. Goldstone would also like to thank Bob Gerdes of Rutgers’s Office of Instructional and Research Technology for support for running mallet on the university’s apps.rutgers.edu server, Ben Schmidt for helpful comments at a THATCamp Theory session, and Jon Goodwin for discussion and his excellent blog posts on topic-modeling jstor data.
Force-directed graphs are tricky. At their best, the perspective they offer can be very helpful; data points cluster into formations that feel intuitive and look approachable. At their worst, though, they can be too cluttered, and the algorithms that make everything fall into place can deceive as much as they clarify.
But there’s still a good chance that, despite the problems that come along with making a network model of anything (and the problems introduced by making network models of texts), they can still be helpful for interpreting topic models. Visualizations aren’t exactly analysis, so what I share below is meant to raise more questions than answers. We also tried to represent as many aspects of the data as possible without breaking (or breaking only a little) the readability of the visualizations. There were some very unsuccessful tries before we arrived at what is below.
A Few Remarks on Method
As part of our work together, Ted has run some topic models on his 19th century literature dataset and computed the correlation of each topic to other topics. We decided to try this out to see topic distribution among genres, and to get a feel for how topics clustered with one another. Which documents belong to what topic aren’t important for now, although in time I’d like to have the nodes link to the text of the documents. Ted has also calculated the predominant genre to which each topic belongs. And, after building a network model where topic correlation equals edge value, I’ve run the Girvan-Newman algorithm to assess how the topics would cluster by their associations with other topics (I like this approach to grouping better than others for examinations of overall graph structure like this one, as we’re not as interested in individual cliques or clusters). What we get then, is two different ways to categorize the topic: on the one hand we have the genre the topic appears in most (with the genres being assigned to individual documents by a human expert), and on the other we see groupings based on co-occurence with other topics.
The visualizations shown here are all built using d3.js, the excellent open source javascript library created by Mike Bostock. Each of the graphs are force-directed: all nodes possess a negative charge and repel from one another. All links bond to these nodes and hold them together. Many force-directed models set their links to behave like springs and contract to the shortest possible distance between nodes, but these graphs below don’t exactly use Hooke’s law to calculate bond length. Instead, they aim for a specific bond length (in this case, 20 pixels) and draw a link as close as possible to that length given the charges acting on it.
I wanted physical proximity of nodes to one another to means something, so the graphs below have variable bond strengths, which means that depending on the value of the bond (which in these graphs is a function of the correlation of a topic with the topic to which it is linked), it will resist or cooperate with being “stretched” (or really, drawn at a longer distance as other stronger bonds take precedence in being drawn closer to the ideal length of 20px). This has implications for how to interpret distance between nodes in these images. The X and Y axes have no set value, so distance does not equal correlation. This is more of a Newtonian than Euclidean space, which means that a short link can indicate a strong bond between nodes, but strong bonds can also be stretched by opposing forces (like other bonds) exerted on nodes at either end of the bond. So distance between nodes can be significant, but only once considered in context of the whole model and its constitutive metaphor of a physical system. Click on the image below for a sample of what we’re talking about:
D3 allows this is to be an interactive visual, and mousing over an individual node will reveal the first ten words of the topic it represents. Also, clicking on a node allows for pulling and rearranging the graph. Doing this a few times helps reinforce the idea that distance between nodes is the result of a set of simulated physical properties. The colors assigned to the Newman groups are arbitrary, but there’s a key on the left to help distinguish among similar colors.
Comparing Two Graphs
Network graphs are more useful when you can compare them to other network graphs. We split the dataset into two halves, and Ted generated 100 topics for each half of the century. We used slightly different genre labels, but we calculated Newman groups again to produce the two graphs below (again, click through to interact with the graph):
Like the first graph, Newman color assignments are arbitrary; what’s purple in the first 50 years of topics has nothing to do with what’s purple in the next 50 years of topics. I’ve modified these graphs in two key ways to help with reading them. Firstly, bond thickness now variable, and it is a function of bond strength (bond strength derived from correlation). This helps assess if a bond is longer because it’s being stretched or because it’s weak, or both. Secondly, I’ve added node “halos” to emphasize the degree to which the nodes cluster, as well as highlight the Newman groups.
Here’s an alternative graph that colors the nodes by genre instead of Newman group, leaving only the halo to represent group affiliation:
I won’t pretend that any of these are easy to read immediately, but one of our experiments in this was to try to represent as many dimensions as possible to create an exploratory framework for a topic model. Halo and node diameter are set, but the two elements on the visualization are independent and could represent topic size, degree of genre predominance in a topic, etc.
My hope is that these visualizations can be insightful and might help us work through the benefits and disadvantages of force-directed layouts for visualizing topic models.
As for interpretation and analysis, here is the part where I punt to domain experts in 19th century literature and history…
I’ve been collaborating with Michael Simeone of I-CHASS on strategies for visualizing topic models. Michael is using d3.js to build interactive visualizations that are much nicer than what I show below, but since this problem is probably too big for one blog post I thought I might give a quick preview.
Basically the problem is this: How do you visualize a whole topic model? It’s easy to pull out a single topic and visualize it — as a word cloud, or as a frequency distribution over time. But it’s also risky to focus on a single topic, because in LDA, the boundaries between topics are ontologically sketchy.
After all, LDA will create as many topics as you ask it to. If you reduce that number, topics that were separate have to fuse; if you increase it, topics have to undergo fission. So it can be misleading to make a fuss about the fact that two discourses are or aren’t “included in the same topic.” (Ben Schmidt has blogged a nice example showing where this goes astray.) Instead we need to ask whether discourses are relatively near each other in the larger model.
But visualizing the larger model is tricky. The go-to strategy for something like this in digital humanities is usually a network graph. I have some questions about that strategy, but since examples are more fun than abstract skepticism, I should start by providing an illustration. The underlying topic model here was produced by LDA on the top 10k words in 872 volume-length documents. Then I produced a correlation matrix of topics against topics. Finally I created a network in Gephi by connecting topics that correlated strongly with each other (see the notes at the end for the exact algorithm). Topics were labeled with their single most salient word, except in three cases where I changed the label manually. The size of each node is roughly log-proportional to the number of tokens in the topic; nodes are colored to reflect the genre most prominent in each topic. (Since every genre is actually represented in every topic, this is only a rough and relative characterization.) Click through for a larger version.
Since single-word labels are usually misleading, a graph like this would be more useful if you could mouseover a topic and get more information. E.g., the topic labeled “cases” (connecting the dark cluster at top to the rest of the graph) is actually “cases death dream case heard saw mother room time night impression.” (Added Nov 20: If you click through, I’ve now edited the underlying illustration as an image map so you get that information when you mouseover individual topics.)
A network graph does usefully dramatize several important things about the model. It reveals, for instance, that “literary” topics tend to be more strongly connected with each other than nonfiction topics (probably because topics dominated by nonfiction also tend to have a relatively specialized vocabulary).
On the other hand, I think a graph like this could easily be over-interpreted. Graphs are good models for structures that are really networks: i.e., structures with discrete nodes that may or may not be related to each other. But a topic model is not really a network. For one thing, as I was pointing out above, the boundaries between topics are at bottom arbitrary, so these nodes aren’t in reality very discrete. Also, in reality every topic is connected to every other. But as Scott Weingart has been pointing out, you usually have to cut edges to produce a network, and this means that you’re always losing some of the data. Every correlation below some threshold of significance will be lost.
That’s a nontrivial loss, because it’s not safe to assume that negative correlations between topics don’t matter. If two topics absolutely never occur together, that’s a meaningful relation! For instance, if language about the slave trade absolutely never occurred in books of poetry, that would tell us something about both discourses.
So I think we’ll also want to consider visualizing topic models through a strategy like PCA (Principal Component Analysis). Instead of simplifying the model by cutting selected edges, PCA basically “compresses” the whole model into two dimensions. That way you can include all of the data (even the evidence provided by negative correlations). When I perform PCA on the same 1850-99 model, I get this illustration. I’m afraid it’s difficult to read unless you click through and click again to magnify:
I think that’s a more accurate visualization of the relationship between topics, both because it rests on a sounder basis mathematically, and because I observe that in practice it does a good job of discriminating genres. But it’s not as fun as a network visually. Also, since specialized discourses are hard to differentiate in only two dimensions, specialized scientific topics (“temperature,” “anterior”) tend to clump in an unreadable electron cloud. But I’m hoping that Michael and I can find some technical fixes for that problem.
Technical notes: To turn a topic model into a correlation matrix, I simply use Pearson correlation to compare topic distributions over documents. I’ve tried other strategies: comparing distributions over the lexicon, for instance, or using cosine similarity instead of correlation.
The network illustration above was produced with Gephi. I selected edges with an ad-hoc algorithm: 1) take the strongest correlation for each topic 2) if the second-strongest correlation is stronger than .2, include that one too. 3) include additional edges if the correlation is stronger than .38. This algorithm is mathematically indefensible, but it produces pretty topic maps.
I find that it works best to perform PCA on the correlation matrix rather than the underlying word counts. Maybe in the future I’ll be able to explain why, but for now I’ll simply commend these lines of R code to readers who want to try it at home:
pca <- princomp(correlationmatrix)
x <- predict(pca)[,1]
y <- predict(pca)[,2]
Right now, humanists often have to take topic modeling on faith. There are several good posts out there that introduce the principle of the thing (by Matt Jockers, for instance, and Scott Weingart). But it’s a long step up from those posts to the computer-science articles that explain “Latent Dirichlet Allocation” mathematically. My goal in this post is to provide a bridge between those two levels of difficulty.
Computer scientists make LDA seem complicated because they care about proving that their algorithms work. And the proof is indeed brain-squashingly hard. But the practice of topic modeling makes good sense on its own, without proof, and does not require you to spend even a second thinking about “Dirichlet distributions.” When the math is approached in a practical way, I think humanists will find it easy, intuitive, and empowering. This post focuses on LDA as shorthand for a broader family of “probabilistic” techniques. I’m going to ask how they work, what they’re for, and what their limits are.
How does it work? Say we’ve got a collection of documents, and we want to identify underlying “topics” that organize the collection. Assume that each document contains a mixture of different topics. Let’s also assume that a “topic” can be understood as a collection of words that have different probabilities of appearance in passages discussing the topic. One topic might contain many occurrences of “organize,” “committee,” “direct,” and “lead.” Another might contain a lot of “mercury” and “arsenic,” with a few occurrences of “lead.” (Most of the occurrences of “lead” in this second topic, incidentally, are nouns instead of verbs; part of the value of LDA will be that it implicitly sorts out the different contexts/meanings of a written symbol.)
Of course, we can’t directly observe topics; in reality all we have are documents. Topic modeling is a way of extrapolating backward from a collection of documents to infer the discourses (“topics”) that could have generated them. (The notion that documents are produced by discourses rather than authors is alien to common sense, but not alien to literary theory.) Unfortunately, there is no way to infer the topics exactly: there are too many unknowns. But pretend for a moment that we had the problem mostly solved. Suppose we knew which topic produced every word in the collection, except for this one word in document D. The word happens to be “lead,” which we’ll call word type W. How are we going to decide whether this occurrence of W belongs to topic Z?
We can’t know for sure. But one way to guess is to consider two questions. A) How often does “lead” appear in topic Z elsewhere? If “lead” often occurs in discussions of Z, then this instance of “lead” might belong to Z as well. But a word can be common in more than one topic. And we don’t want to assign “lead” to a topic about leadership if this document is mostly about heavy metal contamination. So we also need to consider B) How common is topic Z in the rest of this document?
Here’s what we’ll do. For each possible topic Z, we’ll multiply the frequency of this word type W in Z by the number of other words in document D that already belong to Z. The result will represent the probability that this word came from Z. Here’s the actual formula:
Simple enough. Okay, yes, there are a few Greek letters scattered in there, but they aren’t terribly important. They’re called “hyperparameters” — stop right there! I see you reaching to close that browser tab! — but you can also think of them simply as fudge factors. There’s some chance that this word belongs to topic Z even if it is nowhere else associated with Z; the fudge factors keep that possibility open. The overall emphasis on probability in this technique, of course, is why it’s called probabilistic topic modeling.
Now, suppose that instead of having the problem mostly solved, we had only a wild guess which word belonged to which topic. We could still use the strategy outlined above to improve our guess, by making it more internally consistent. We could go through the collection, word by word, and reassign each word to a topic, guided by the formula above. As we do that, a) words will gradually become more common in topics where they are already common. And also, b) topics will become more common in documents where they are already common. Thus our model will gradually become more consistent as topics focus on specific words and documents. But it can’t ever become perfectly consistent, because words and documents don’t line up in one-to-one fashion. So the tendency for topics to concentrate on particular words and documents will eventually be limited by the actual, messy distribution of words across documents.
That’s how topic modeling works in practice. You assign words to topics randomly and then just keep improving the model, to make your guess more internally consistent, until the model reaches an equilibrium that is as consistent as the collection allows.
What is it for? Topic modeling gives us a way to infer the latent structure behind a collection of documents. In principle, it could work at any scale, but I tend to think human beings are already pretty good at inferring the latent structure in (say) a single writer’s oeuvre. I suspect this technique becomes more useful as we move toward a scale that is too large to fit into human memory.
So far, most of the humanists who have explored topic modeling have been historians, and I suspect that historians and literary scholars will use this technique differently. Generally, historians have tried to assign a single label to each topic. So in mining the Richmond Daily Dispatch, Robert K. Nelson looks at a topic with words like “hundred,” “cotton,” “year,” “dollars,” and “money,” and identifies it as TRADE — plausibly enough. Then he can graph the frequency of the topic as it varies over the print run of the newspaper.
As a literary scholar, I find that I learn more from ambiguous topics than I do from straightforwardly semantic ones. When I run into a topic like “sea,” “ship,” “boat,” “shore,” “vessel,” “water,” I shrug. Yes, some books discuss sea travel more than others do. But I’m more interested in topics like this:
You can tell by looking at the list of words that this is poetry, and plotting the volumes where the topic is prominent confirms the guess.
This topic is prominent in volumes of poetry from 1815 to 1835, especially in poetry by women, including Felicia Hemans, Letitia Landon, and Caroline Norton. Lord Byron is also well represented. It’s not really a “topic,” of course, because these words aren’t linked by a single referent. Rather it’s a discourse or a kind of poetic rhetoric. In part it seems predictably Romantic (“deep bright wild eye”), but less colorful function words like “where” and “when” may reveal just as much about the rhetoric that binds this topic together.
A topic like this one is hard to interpret. But for a literary scholar, that’s a plus. I want this technique to point me toward something I don’t yet understand, and I almost never find that the results are too ambiguous to be useful. The problematic topics are the intuitive ones — the ones that are clearly about war, or seafaring, or trade. I can’t do much with those.
Now, I have to admit that there’s a bit of fine-tuning required up front, before I start getting “meaningfully ambiguous” results. In particular, a standard list of stopwords is rarely adequate. For instance, in topic-modeling fiction I find it useful to get rid of at least the most common personal pronouns, because otherwise the difference between 1st and 3rd person point-of-view becomes a dominant signal that crowds out other interesting phenomena. Personal names also need to be weeded out; otherwise you discover strong, boring connections between every book with a character named “Richard.” This sort of thing is very much a critical judgment call; it’s not a science.
I should also admit that, when you’re modeling fiction, the “author” signal can be very strong. I frequently discover topics that are dominated by a single author, and clearly reflect her unique idiom. This could be a feature or a bug, depending on your interests; I tend to view it as a bug, but I find that the author signal does diffuse more or less automatically as the collection expands.
What are the limits of probabilistic topic modeling?I spent a long time resisting the allure of LDA, because it seemed like a fragile and unnecessarily complicated technique. But I have convinced myself that it’s both effective and less complex than I thought. (Matt Jockers, Travis Brown, Neil Fraistat, and Scott Weingart also deserve credit for convincing me to try it.)
This isn’t to say that we need to use probabilistic techniques for everything we do. LDA and its relatives are valuable exploratory methods, but I’m not sure how much value they will have as evidence. For one thing, they require you to make a series of judgment calls that deeply shape the results you get (from choosing stopwords, to the number of topics produced, to the scope of the collection). The resulting model ends up being tailored in difficult-to-explain ways by a researcher’s preferences. Simpler techniques, like corpus comparison, can answer a question more transparently and persuasively, if the question is already well-formed. (In this sense, I think Ben Schmidt is right to feel that topic modeling wouldn’t be particularly useful for the kinds of comparative questions he likes to pose.)
Moreover, probabilistic techniques have an unholy thirst for memory and processing time. You have to create several different variables for every single word in the corpus. The models I’ve been running, with roughly 2,000 volumes, are getting near the edge of what can be done on an average desktop machine, and commonly take a day. To go any further with this, I’m going to have to beg for computing time. That’s not a problem for me here at Urbana-Champaign (you may recall that we invented HAL), but it will become a problem for humanists at other kinds of institutions.
Probabilistic methods are also less robust than, say, vector-space methods. When I started running LDA, I immediately discovered noise in my collection that had not previously been a problem. Running headers at the tops of pages, in particular, left traces: until I took out those headers, topics were suspiciously sensitive to the titles of volumes. But LDA is sensitive to noise, after all, because it is sensitive to everything else! On the whole, if you’re just fishing for interesting patterns in a large collection of documents, I think probabilistic techniques are the way to go.
Where to go next
The standard implementation of LDA is the one in MALLET. I haven’t used it yet, because I wanted to build my own version, to make sure I understood everything clearly. But MALLET is better. If you want a few examples of complete topic models on collections of 18/19c volumes, I’ve put some models, with R scripts to load them, in my github folder.
If you want to understand the technique more deeply, the first thing to do is to read up on Bayesian statistics. In this post, I gloss over the Bayesian underpinnings of LDA because I think the implementation (using a strategy called Gibbs sampling, which is actually what I described above!) is intuitive enough without them. And this might be all you need! I doubt most humanists will need to go further. But if you do want to tinker with the algorithm, you’ll need to understand Bayesian probability.
David Blei invented LDA, and writes well, so if you want to understand why this technique has “Dirichlet” in its name, his works are the next things to read. I recommend his Introduction to Probabilistic Topic Models. It recently came out in Communications of the ACM, but I think you get a more readable version by going to his publication page (link above) and clicking the pdf link at the top of the page.
Probably the next place to go is “Rethinking LDA: Why Priors Matter,” a really thoughtful article by Hanna Wallach, David Mimno, and Andrew McCallum that explains the “hyperparameters” I glossed over in a more principled way.
Then there are a whole family of techniques related to LDA — Topics Over Time, Dynamic Topic Modeling, Hierarchical LDA, Pachinko Allocation — that one can explore rapidly enough by searching the web. In general, it’s a good idea to approach these skeptically. They all promise to do more than LDA does, but they also add additional assumptions to the model, and humanists are going to need to reflect carefully about which assumptions we actually want to make. I do think humanists will want to modify the LDA algorithm, but it’s probably something we’re going to have to do for ourselves; I’m not convinced that computer scientists understand our problems well enough to do this kind of fine-tuning.
I’ve been doing topic modeling on collections of eighteenth- and nineteenth-century volumes, using volumes themselves as the “documents” being modeled. Lisa has been pursuing topic modeling on a collection of poems, using individual poems as the documents being modeled.
The math we’re using is probably similar. I believe Lisa is using MALLET. I’m using a version of Latent Dirichlet Allocation that I wrote in Java so I could tinker with it.
But the interesting question we’re exploring is this: How does the meaning of LDA change when it’s applied to writing at different scales of granularity? Lisa’s documents (poems) are a typical size for LDA: this technique is often applied to identify topics in newspaper articles, for instance. This is a scale that seems roughly in keeping with the meaning of the word “topic.” We often assume that the topic of written discourse changes from paragraph to paragraph, “topic sentence” to “topic sentence.”
By contrast, I’m using documents (volumes) that are much larger than a paragraph, so how is it possible to produce topics as narrowly defined as this one?
This is based on a generically diverse collection of 1,782 19c volumes, not all of which are plotted here (only the volumes where the topic is most prominent are plotted; the gray line represents an aggregate frequency including unplotted volumes). The most prominent words in this topic are “mother, little, child, children, old, father, poor, boy, young, family.” It’s clearly a topic about familial relationships, and more specifically about parent-child relationships. But there aren’t a whole lot of books in my collection specifically about parent-child relationships! True, the most prominent books in the topic are A. F. Chamberlain’s The Child and Childhood in Folk Thought (1896) and Alice Earl Morse’s Child Life in Colonial Days (1899), but most of the rest of the prominent volumes are novels — by, for instance, Catharine Sedgwick, William Thackeray, Louisa May Alcott, and so on. Since few novels are exclusively about parent-child relations, how can the differences between novels help LDA identify this topic?
The answer is that the LDA algorithm doesn’t demand anything remotely like a one-to-one relationship between documents and topics. LDA uses the differences between documents to distinguish topics — but not by establishing a one-to-one mapping. On the contrary, every document contains a bit of every topic, although it contains them in different proportions. The numerical variation of topic proportions between documents provides a kind of mathematical leverage that distinguishes topics from each other.
The implication of this is that your documents can be considerably larger than the kind of granularity you’re trying to model. As long as the documents are small enough that the proportions between topics vary significantly from one document to the next, you’ll get the leverage you need to discriminate those topics. Thus you can model a collection of volumes and get topics that are not mere “subject classifications” for volumes.
Now, in the comments to an earlier post I also said that I thought “topic” was not always the right word to use for the categories that are produced by topic modeling. I suggested that “discourse” might be better, because topics are not always unified semantically. This is a place where Lisa starts to question my methodology a little, and I don’t blame her for doing so; I’m making a claim that runs against the grain of a lot of existing discussion about “topic modeling.” The computer scientists who invented this technique certainly thought they were designing it to identify semantically coherent “topics.” If I’m not doing that, then, frankly, am I using it right? Let’s consider this example:
This is based on the same generically diverse 19c collection. The most prominent words are “love, life, soul, world, god, death, things, heart, men, man, us, earth.” Now, I would not call that a semantically coherent topic. There is some religious language in there, but it’s not about religion as such. “Love” and “heart” are mixed in there; so are “men” and “man,” “world” and “earth.” It’s clearly a kind of poetic diction (as you can tell from the color of the little circles), and one that increases in prominence as the nineteenth century goes on. But you would be hard pressed to identify this topic with a single concept.
Does that mean topic modeling isn’t working well here? Does it mean that I should fix the system so that it would produce topics that are easier to label with a single concept? Or does it mean that LDA is telling me something interesting about Victorian poetry — something that might be roughly outlined as an emergent discourse of “spiritual earnestness” and “self-conscious simplicity”? It’s an open question, but I lean toward the latter alternative. (By the way, the writers most prominently involved here include Christina Rossetti, Algernon Swinburne, and both Brownings.)
In an earlier comment I implied that the choice between “semantic” topics and “discourses” might be aligned with topic modeling at different scales, but I’m not really sure that’s true. I’m sure that the document size we choose does affect the level of granularity we’re modeling, but I’m not sure how radically it affects it. (I believe Matt Jockers has done some systematic work on that question, but I’ll also be interested to see the results Lisa gets when she models differences between poems.)
I actually suspect that the topics identified by LDA probably always have the character of “discourses.” They are, technically, “kinds of language that tend to occur in the same discursive contexts.” But a “kind of language” may or may not really be a “topic.” I suspect you’re always going to get things like “art hath thy thou,” which are better called a “register” or a “sociolect” than they are a “topic.” For me, this is not a problem to be fixed. After all, if I really want to identify topics, I can open a thesaurus. The great thing about topic modeling is that it maps the actual discursive contours of a collection, which may or may not line up with “concepts” any writer ever consciously held in mind.
Computer scientists don’t understand the technique that way.* But on this point, I think we literary scholars have something to teach them.
*[UPDATE April 3, 2012: Allen Riddell rightly points out in the comments below that Blei’s original LDA article is elegantly agnostic about the significance of the “topics” — which are at bottom just “latent variables.” The word “topic” may be misleading, but computer scientists themselves are often quite careful about interpretation.]
Documentation / open data:
I’ve put the topic model I used to produce these visualizations on github. It’s in the subfolder 19th150topics under folder BrowseLDA. Each folder contains an R script that you run; it then prompts you to load the data files included in the same folder, and allows you to browse around in the topic model, visualizing each topic as you go.
I have also pushed my Java code for LDA up to github. But really, most people are better off with MALLET, which is infinitely faster and has hyperparameter optimization that I haven’t added yet. I wrote this just so that I would be able to see all the moving parts and understand how they worked.
I’m getting ahead of myself with this post, because I don’t have time to explain everything I did to produce this. But it was just too striking not to share.
Basically, I’m experimenting with Latent Dirichlet Allocation, and I’m impressed. So first of all, thanks to Matt Jockers, Travis Brown, Neil Fraistat, and everyone else who tried to convince me that Bayesian methods are better. I’ve got to admit it. They are.
But anyway, in a class I’m teaching we’re using LDA on a generically diverse collection of 1,853 volumes between 1751 and 1903. The collection includes fiction, poetry, drama, and a limited amount of nonfiction (just biography). We’re stumbling on a lot of fascinating things, but this was slightly moving. Here’s the graph for one particular topic.
The circles and X’s are individual volumes. Blue is fiction, green is drama, pinkish purple is poetry, black biography. Only the volumes where this topic turned out to be prominent are plotted, because if you plot all 1,853 it’s just a blurry line at the bottom of the image. The gray line is an aggregate frequency curve, which is not related in any very intelligible way to the y-axis. (Work in progress …) As you can see. this topic is mostly prominent in fiction around the year 1800. Here are the top 50 words in the topic:
But here’s what I find slightly moving. The x’s at the top of the graph are the 10 works in the collection where the topic was most prominent. They include, in order, Mary Wollstonecraft Shelley, Frankenstein, Mary Wollstonecraft, Mary, William Godwin, St. Leon, Mary Wollstonecraft Shelley, Lodore, William Godwin, Fleetwood, William Godwin, Mandeville, and Mary Wollstonecraft Shelley, Falkner.
In short, this topic is exemplified by a family! Mary Hays does intrude into the family circle with Memoirs of Emma Courtney, but otherwise, it’s Mary Wollstonecraft, William Godwin, and their daughter.
Other critics have of course noticed that M. W. Shelley writes “Godwinian novels.” And if you go further down the list of works, the picture becomes less familial (Helen Maria Williams and Thomas Holcroft butt in, as well as P. B. Shelley). Plus, there’s another topic in the model (“myself these should situation”) that links William Godwin more closely to Charles Brockden Brown than it does to his wife or daughter. And LDA isn’t graven on stone; every time you run topic modeling you’re going to get something slightly different. But still, this is kind of a cool one. “Mind feelings heart felt” indeed.
In a couple of recent posts, I argued that fiction and poetry became less similar to nonfiction prose over the period 1700-1900. But because I only measured genres’ distance from each other, I couldn’t say much substantively about the direction of change. Toward the end of the second post, though, I did include a graph that hinted at a possible cause:
The older part of the lexicon (mostly words derived from Old English) gradually became more common in poetry, fiction, and drama than in nonfiction prose. This may not be the only reason for growing differentiation between literary and nonliterary language, but it seems worth exploring. (I should note that function words are excluded from this calculation for reasons explained below; we’re talking about verbs, nouns, and adjectives — not about a rising frequency of “the.”)
Why would genres become etymologically different? Well, it appears that words of different origins are associated in contemporary English with different registers (varieties of language appropriate for a particular social situation). Words of Old English provenance get used more often in speech than in writing — and in writing they are (now) used more often in narrative than in exposition. Moreover, writers learn to produce this distinction as they get older; there isn’t a marked difference for students in elementary school. But as they advance to high school, students learn to use Latinate words in formal expository writing (Bar-Ilan and Berman, 2007).
It’s not hard to see why words of Old English origin might be associated with spoken language. English was for 200 years (1066-1250) almost exclusively spoken. The learned part of the Old English lexicon didn’t survive this period. Instead, when English began to be used again in writing, literate vocabulary was borrowed from French and Latin. As a result, etymological distinctions in English tend also to be distinctions between different social contexts of language use.
Instead of distinguishing “Germanic” and “Latinate” diction here, I have used the first attested date for each word, choosing 1150 as a dividing line because it’s the midpoint of the period when English was not used in writing. Of course pre-1150 words are mostly from Old English, but I prefer to divide based on date-of-entry because that highlights the history of writing rather than a spurious ethnic mystique. (E.g., “Anglo-Saxon is a livelier tongue than Latin, so use Anglo-Saxon words.” — E. B. White.) But the difference isn’t material. You could even just measure the average length of words in different genres and get results that are close to the results I’m graphing here (the correlation between the pre/post-1150 ratio and average word length is often -.85 or lower).
The bottom line is this: using fewer pre-1150 words tends to make diction more overtly literate or learned. Using more of them makes diction less overtly learned, and perhaps closer to speech. It would be dangerous to assume much more: people may think that Old English words are “concrete” — but this isn’t true, for instance, of “word” or “true.”
What can we learn by graphing this aspect of diction?
In the period 1700-1900, I think we learn three interesting things:
All genres of writing (or at least of prose) seem to acquire an exaggeratedly “literate” diction in the course of the eighteenth century.
Poetry and fiction reverse that process in the nineteenth century, and develop a diction that is markedly less learned than other kinds of writing — or than their own past history.
But they do that to different degrees, and as a result the overall story is one of increasing differentiation — not just between “literary” and “nonliterary” diction — but between poetry and fiction as well.
I’m fascinated by this picture. It suggests that the difference linguists have observed between the registers of exposition and narrative may be a relatively recent development. It also raises interesting questions about “literariness” in the eighteenth and nineteenth centuries. For instance, contrast this picture to the standard story where “poetic diction” is an eighteenth-century refinement that the nineteenth century learns to dispense with. Where the etymological dimension of diction is concerned, that story doesn’t fit the evidence. On the contrary, nineteenth-century poetry differentiates itself from the diction of prose in a new and radical way: by the end of the century, the older part of the lexicon has become more than 2.5 times more prominent, on average, in verse than it is in nonfiction prose.
I could speculate about why this happened, but I don’t really know yet. What I can do is give a little more descriptive detail. For instance, if pre-1150 words became more common in 19c poetry … which words, exactly, were involved? One way to approach that is to ask which individual words correlate most strongly with the pre/post-1150 ratio. We might focus especially, for instance, on the rising trend in poetry from the middle of the eighteenth century to 1900. If you sort the top 10,000 words in the poetry collection by correlation with yearly values of the pre/post ratio, you get a list like this:
But the precise correlation coefficients don’t matter as much as an overall picture of diction, so I’ll simply list the hundred words that correlate most strongly with the pre/post-1150 ratio in poetry from 1755 to 1900:
We’re looking mostly at a list of pre-1150 words, with a few exceptions (“face,” “flower,” “surely”). That’s not an inevitable result; if the etymological trend had been a side-effect of something mostly unrelated to linguistic register (say, a vogue for devotional poetry), then sorting the top 10,000 words by correlation with the trend would reveal a list of words associated with its underlying (religious) cause. But instead we’re seeing a trend that seems to have a coherent sociolinguistic character. That’s not just a feature of the top 100 words: the average pre-1150 word is located 2210 places higher on this list than the average post-1150 word.
It’s not, however, simply a list of common Anglo-Saxon words. The list clearly reflects a particular model of “poetic diction,” although the nature of that model is not easy to describe. It involves an odd mixture of nouns for large natural phenomena (wind, sea, rain, water, moon, sun, star, stars, sunset, sunrise, dawn, morning, days, night, nights) and verbs that express a subjective relation (sang, laughed, dreamed, seeing, kiss, kissed, heard, looked, loving, stricken). [Afterthought: I don’t think we have any Hopkins in our collection, but it sounds like my computer is parodying Gerard Manley Hopkins.] There’s also a bit of explicitly archaic Wardour Street in there (yea, nay, wherein, thereon, fro).
Here, by contrast, are the words at the bottom of the list — the ones that correlate negatively with the pre/post-1150 trend, because they are less common, on average, in years where that trend spikes.
There’s a lot that could be said about this list, but one thing that leaps out is an emphasis on social competition. Pomp, power, superior, powers, boast, bestow, applause, grandeur, taste, pride, refined, rival, fortune, display, genius, merit, talents. This is the language of poems that are not bashful about acknowledging the relationship between “social” distinction and the “arts” “inspired” by the “muse” — a theme entirely missing (or at any rate disavowed) in the other list. So we’re getting a fairly clear picture of a thematic transformation in the concerns of poetry from 1755 to 1900. But these lists are generated strictly by correlation with the unsmoothed year-to-year variation of an etymological trend! Moreover, the lists have themselves an etymological character. There are admittedly a few pre-1150 words in this list of negative correlators (mind, oft, every), but by and large it’s a list of words derived from French or Latin after 1150.
I think the apparent connection between sociolinguistic and thematic issues is the really interesting part of this. It begins to hint that the broader shift in poetic diction (using words from the older part of the lexicon to differentiate poetry from prose) had itself an unacknowledged social rationale — which was to disavow poetry’s connection to cultural distinction, and foreground instead a simplified individual subjectivity. I’m admittedly speculating a little here, and there’s a great deal more that could be said both about poetry and about parallel trends in fiction — but I’ve said enough for one blog post.
A couple of quick final notes. You’re wondering, what about drama?
Our collection of drama in the nineteenth century is actually too sparse to draw any conclusions yet, but there’s the trend line so far, if you’re interested.
You’re also wondering, how were pre- and post-1150 words actually sorted out? I made a list of the 10,500 most common words in the collection, and mined etymologies for them using a web-crawler on Dictionary.com. I excluded proper nouns, abbreviations, and words that entered English after 1699. I also excluded function words (determiners, prepositions, conjunctions, pronouns, and the verb to be) because as Bar-Ilan and Berman say, “register variation is essentially a matter of choice — of selecting high-level more formal alternatives instead of everyday, colloquial items or vice versa” (15). There is generally no alternative to prepositions, pronouns, etc, so they don’t tell us much about choice. After those exclusions, I had a list of 9,517 words, of which 2,212 entered the language before 1150 and 7,125 after 1149. (The list is available here.)
Finally, I doubt we’ll be so lucky — but if you do cite this blog post, it should be cited as a collective work by Ted Underwood and Jordan Sellers, because the nineteenth-century part of the underlying collection is a product of Jordan’s research.
References
Laly Bar-Ilan and Ruth A. Berman, “Developing register differentiation: the Latinate-Germanic divide in English,” Linguistics 45 (2007): 1-35.