One way numbers can after all make us dumber.

[Used to have a more boring title still preserved in the URL. -Ed.] In general I’m deeply optimistic about the potential for dialogue between the humanities and quantitative disciplines. I think there’s a lot we can learn from each other, and I don’t think the humanities need any firewall to preserve their humanistic character.

But there is one place where I’m coming to agree with people who say that quantitative methods can make us dumber. To put it simply: numbers tend to distract the eye. If you quantify part of your argument, critics (including your own internal critic) will tend to focus on problems in the numbers, and ignore the deeper problems located elsewhere.

I’ve discovered this in my own practice. For instance, when I blogged about genre in large digital collections. I got a lot of useful feedback on those blog posts; it was probably the most productive conversation I’ve ever had as a scholar. But most of the feedback focused on potential problems in the quantitative dimension of my argument. E.g., how representative was this collection as a sample of print culture? Or, what smoothing strategies should I be using to plot results? My own critical energies were focused on similar questions.

Those questions were useful, and improved the project greatly, but in most cases they didn’t rock its foundations. And with a year’s perspective, I’ve come to recognize that there were after all foundation-rocking questions to be posed. For instance, in early versions of this project, I hadn’t really ironed out the boundary between “poetry” and “drama.” Those categories overlap, after all! This wasn’t creating quantitative problems (Jordan Sellers and I were handling cases consistently), but it was creating conceptual ones: the line “poetry” below should probably be labeled “nondramatic verse.”

Results I think are still basically reliable, although we need to talk more about that word "genre."

Results I think are still basically reliable, although we need to talk more about that word “genre.”

The biggest problem was even less quantitative, and more fundamental: I needed to think harder about the concept of genre itself. As I model different kinds of genre, and read about similar (traditional and digital) projects by other scholars, I increasingly suspect the elephant in the room is that the word may not actually hold together. Genre may be a box we’ve inherited for a whole lot of basically different things. A bibliography is a genre; so is the novel; so is science fiction; so is the Kailyard school; so is acid house. But formally, socially, and chronologically, those are entities of very different kinds.

Skepticism about foundational concepts has been one of the great strengths of the humanities. The fact that we have a word for something (say genre or the individual) doesn’t necessarily imply that any corresponding entity exists in reality. Humanists call this mistake “reification,” and we should hold onto our skepticism about it. If I hand you a twenty-page argument using Google ngrams to prove that the individual has been losing ground to society over the last hundred years, your response should not be “yeah, but how representative is Google Books, and how good is their OCR?” (Those problems are relatively easy to solve.) Your response should be, “Uh … how do you distinguish ‘the individual’ from ‘society’ again?”

As I said, humanists have been good at catching reification; it’s a strength we should celebrate. But I don’t see this habit of skepticism as an endangered humanistic specialty that needs to be protected by a firewall. On the contrary, we should be exporting our skepticism! This habit of questioning foundational concepts can be just as useful in the sciences and social sciences, where quantitative methods similarly distract researchers from more fundamental problems. [I don’t mean to suggest that it’s never occurred to scientists to resist this distraction: as Matt Wilkens points out in the comments, they’re often good at it. -Ed.]

In psychology, for instance, emphasis on clearing a threshold of statistical significance (defined as a p-value) frequently distracts researchers from more fundamental questions of experimental design (like, are we attempting to measure an entity that actually exists?) Andrew Gelman persuasively suggests that this is not just a problem caused by quantification but can be more broadly conceived as a “dangerous lure of certainty.” In any field, it can be tempting to focus narrowly on the degree of certainty associated with a hypothesis. But it’s often more important to ask whether the underlying question is interesting and meaningfully framed.

On the other hand, this doesn’t mean that humanists need to postpone quantitative research until we know how to define long-debated concepts. I’m now pretty skeptical about the coherence of this word genre, for instance, but it’s a skepticism I reached precisely by attempting to iron out details in a quantitative model. Questions about accuracy can prompt deeper conceptual questions, which reframe questions of accuracy, in a virtuous cycle. The important thing, I think, is not to let yourself stall out on the “accuracy” part of the cycle: it offers a tempting illusion of perfectibility, but that’s not actually our goal.

Postscript: Scott Weingart conveys the point I’m trying to make in a nicely compressed way by saying that it flips the conventional worry that the mere act of quantification will produce unearned trust. In academia, the problem is more often inverse: we’re so strongly motivated to criticize numbers that we forget to be skeptical about everything else.

Distant reading and representativeness.

Digital collections are vastly expanding literary scholars’ field of view: instead of describing a few hundred well-known novels, we can now test our claims against corpora that include tens of thousands of works. But because this expansion of scope has also raised expectations, the question of representativeness is often discussed as if it were a weakness rather than a strength of digital methods. How can we ever produce a corpus complete and balanced enough to represent print culture accurately?

I think the question is wrongly posed, and I’d like to suggest an alternate frame. As I see it, the advantage of digital methods is that we never need to decide on a single model of representation. We can and should keep enlarging digital collections, to make them as inclusive as possible. But no matter how large our collections become, the logic of representation itself will always remain open to debate. For instance, men published more books than women in the eighteenth century. Would a corpus be correctly balanced if it reproduced those disproportions? Or would a better model of representation try to capture the demographic reality that there were roughly as many women as men? There’s something to be said for both views.

Scott Weingart tweet.To take another example, Scott Weingart has pointed out that there’s a basic tension in text mining between measuring “what was written” and “what was read.” A corpus that contains one record for every title, dated to its year of first publication, would tend to emphasize “what was written.” Measuring “what was read” is harder: a perfect solution would require sales figures, reviews, and other kinds of evidence. But, as a quick stab at the problem, we could certainly measure “what was printed,” by including one record for every volume in a consortium of libraries like HathiTrust. If we do that, a frequently-reprinted work like Robinson Crusoe will carry about a hundred times more weight than a novel printed only once.

We’ll never create a single collection that perfectly balances all these considerations. But fortunately, we don’t need to: there’s nothing to prevent us from framing our inquiry instead as a comparative exploration of many different corpora balanced in different ways.

For instance, if we’re troubled by the difference between “what was written” and “what was read,” we can simply create two different collections — one limited to first editions, the other including reprints and duplicate copies. Neither collection is going to be a perfect mirror of print culture. Counting the volumes of a novel preserved in libraries is not the same thing as counting the number of its readers. But comparing these collections should nevertheless tell us whether the issue of popularity makes much difference for a given research question.

I suspect in many cases we’ll find that it makes little difference. For instance, in tracing the development of literary language, I got interested in the relative prominence of words that entered English before and after the Norman Conquest — and more specifically, in how that ratio changed over time in different genres. My first approach to this problem was based on a collection of 4,275 volumes that were, for the most part, limited to first editions (773 of these were prose fiction).

But I recognized that other scholars would have questions about the representativeness of my sample. So I spent the last year wrestling with 470,000 volumes from HathiTrust; correcting their OCR and using classification algorithms to separate fiction from the rest of the collection. This produced a collection with a fundamentally different structure — where a popular work of fiction could be represented by dozens or scores of reprints scattered across the timeline. What difference did that make to the result? (click through to enlarge)

The same question posed to two different collections. 773 hand-selected first editions on the left; on the right, 47,549 volumes, including many translations and reprints.

The same question posed to two different collections. 773 hand-selected first editions on the left; on the right, 47,549 volumes, including many translations and reprints. Yearly ratios are plotted rather than individual works.

It made almost no difference. The scatterplots look different, of course, because the hand-selected collection (on the left) is relatively stable in size across the timespan, and has a consistent kind of noisiness, whereas the HathiTrust collection (on the right) gets so huge in the nineteenth century that noise almost disappears. But the trend lines are broadly comparable, although the collections were created in completely different ways and rely on incompatible theories of representation.

I don’t regret the year I spent getting a binocular perspective on this question. Although in this case changing the corpus made little difference to the result, I’m sure there are other questions where it will make a difference. And we’ll want to consider as many different models of representation as we can. I’ve been gathering metadata about gender, for instance, so that I can ask what difference gender makes to a given question; I’d also like to have metadata about the ethnicity and national origin of authors.

pullquoteBut the broader point I want to make here is that people pursuing digital research don’t need to agree on a theory of representation in order to cooperate.

If you’re designing a shared syllabus or co-editing an anthology, I suppose you do need to agree in advance about the kind of representativeness you’re aiming to produce. Space is limited; tradeoffs have to be made; you can only select one set of works.

But in digital research, there’s no reason why we should ever have to make up our minds about a model of representativeness, let alone reach consensus. The number of works we can select for discussion is not limited. So we don’t need to imagine that we’re seeking a correspondence between the reality of the past and any set of works. Instead, we can look at the past from many different angles and ask how it’s transformed by different perspectives. We can look at all the digitized volumes we have — and then at a subset of works that were widely reprinted — and then at another subset of works published in India — and then at three or four works selected as case studies for close reading. These different approaches will produce different pictures of the past, to be sure. But nothing compels us to make a final choice among them.

We don’t already understand the broad outlines of literary history.

This post is substantially the same as a talk I delivered at the University of Nebraska on Friday, Feb 8th.

In recent months I’ve had several conversations with colleagues who are friendly to digital methods but wary of claims about novelty that seem overstated. They believe that text mining can add a new level of precision to our accounts of literary history, or add a new twist to an existing debate. They just don’t think it’s plausible that quantification will uncover fundamentally new evidence, or patterns we didn’t previously expect.

If I understand my friends’ skepticism correctly, it’s founded less on a narrow objection to text mining than on a basic premise about the nature of literary study. And where the history of the discipline is concerned, they’re arguably right. In fact, the discipline of literary studies has not usually advanced by uncovering unexpected evidence. As grad students, that’s not what we were taught to aim for. Instead we learned that the discipline moves forward dialectically. You take something that people already believe and “push against” it, or “critique” it, or “complicate” it. You don’t make discoveries in literary study, or if you do they’re likely to be minor — a lost letter from Byron to his tailor. Instead of making discoveries, you make interventions — a telling word.

The broad contours of our discipline are already known, so nothing can grow without displacing something else.

The broad contours of our discipline are already known, so nothing can grow without displacing something else.

So much flows from this assumption. If we’re not aiming for discovery, if the broad contours of literary history are already known, then methodological conversation can only be a zero-sum game. That’s why, when I say “digital methods don’t have to displace traditional scholarship,” my colleagues nod politely but assume it’s insincere happy talk. They know that in reality, the broad contours of our discipline are already known, and anything within those boundaries can only grow by displacing something else.

These are the assumptions I was also working with until about three years ago. But a couple of years of mucking about in digital archives have convinced me that the broad contours of literary history are not in fact well understood.

For instance, I just taught a course called Introduction to Fiction, and as part of that course I talk about the importance of point of view. You can characterize point of view in a lot of subtle ways, but the initial, basic division is between first-person and third-person perspectives.

Suppose some student had asked the obvious question, “Which point of view is more common? Is fiction mostly written in the first or third person? And how long has it been that way?” Fortunately undergrads don’t ask questions like that, because I couldn’t have answered.

I have a suspicion that first person is now used more often in literary fiction than in novels for a mass market, but if you ask me to defend that — I can’t. If you ask me how long it’s been that way — no clue. I’ve got a Ph.D in this field, but I don’t know the history of a basic formal device. Now, I’m not totally ignorant. I can say what everyone else says: “Jane Austen perfected free indirect discourse. Henry James. Focalizing character. James Joyce. Stream of consciousness. Etc.” And three years ago that might have seemed enough, because the bigger, simpler question was obviously unanswerable and I wouldn’t have bothered to pose it.

But recently I’ve realized that this question is answerable. We’ve got large digital archives, so we could in principle figure out how the proportions of first- and third-person narration have changed over time.

You might reasonably expect me to answer that question now. If so, you underestimate my commitment to the larger thesis here: that we don’t understand literary history. I will eventually share some new evidence about the history of narration. But first I want to stress that I’m not in a position to fully answer the question I’ve posed. For three reasons:

    1) Our digital collections are incomplete. I’m working with a collection of about 700,000 18th and 19th-century volumes drawn from HathiTrust. That’s a lot. But it’s not everything that was written in the English language, or even everything that was published.

    2) This is work in progress. For instance, I’ve cleaned and organized the non-serial part of the collection (about 470,000 volumes), but I haven’t started on the periodicals yet. Also, at the moment I’m counting volumes rather than titles, so if a book was often reprinted I count it multiple times. (This could be a feature or a bug depending on your goals.)

    3) Most importantly, we can’t answer the question because we don’t fully understand the terms we’re working with. After all, what is “first-person narration?”

The truth is that the first person comes in a lot of different forms. There are cases where the narrator is also the protagonist. That’s pretty straightforward. Then epistolary novels. Then there are cases where the narrator is anonymous — and not a participant in the action — but sometimes refers to herself as I. Even Jane Austen’s narrator sometimes says “I.” Henry Fielding’s narrator does it a lot more. Should we simply say this is third-person narration, or should we count it as a move in the direction of first? Then, what are we going to do about books like Bleak House? Alternating chapters of first and third person. Maybe we call that 50% first person? — or do we assign it to a separate category altogether? What about a novel like Dracula, where journals and letters are interspersed with news clippings?

Suppose we tried to crowdsource this problem. We get a big team together and decide to go through half a million volumes, first of all to identify the ones that are fiction, and secondly, if a volume is fiction, to categorize the point of view. Clearly, it’s going to be hard to come to agreement on categories. We might get halfway through the crowdsourcing process, discover a new category, and have to go back to the drawing board.

blurrinessNotice that I haven’t mentioned computers at all yet. This is not a problem created by computers, because they “only understand binary logic.” It’s a problem created by us. Distant reading is hard, fundamentally, because human beings don’t agree on a shared set of categories. Franco Moretti has a well-known list of genres, for instance, in Graphs, Maps, Trees. But that list doesn’t represent an achieved consensus. Moretti separates the eighteenth-century gothic novel from the late-nineteenth-century “imperial gothic.” But for other critics, those are two parts of the same genre. For yet other critics, the “gothic” isn’t a genre at all; it’s a mode like tragedy or satire, which is why gothic elements can pervade a bunch of different genres.

This is the darkest moment of this post. It may seem that there’s no hope for literary historians. How can we ever know anything if we can’t even agree on the definitions of basic concepts like genre and point of view? But here’s the crucial twist — and the real center of what I want to say. The blurriness of literary categories is exactly why it’s helpful to use computers for distant reading. With an algorithm, we can classify 500,000 volumes provisionally. Try defining point of view one way, and see what you get. If someone else disagrees, change the definition; you can run the algorithm again overnight. You can’t re-run a crowdsourced cataloguing project on 500,000 volumes overnight.

Second, algorithms make it easier to treat categories as plural and continuous. Although Star Trek teaches us otherwise, computers do not start to stammer and emit smoke if you tell them that an object belongs in two different categories at once. Instead of sorting texts into category A or category B, we can assign degrees of membership to multiple categories. As many as we want. So The Moonstone can be 80% similar to a sensation novel and 50% similar to an imperial gothic, and it’s not a problem. Of course critics are still going to disagree about individual cases. And we don’t have to pretend that these estimates are precise characterizations of The Moonstone. The point is that an algorithm can give us a starting point for discussion, by rapidly mapping a large collection in a consistent but flexibly continuous way.

Then we can ask, Does the gothic often overlap with the sensation novel? What other genres does it overlap with? Even if the boundaries are blurry, and critics disagree about every individual case — even if we don’t have a perfect definition of the term “genre” itself — we’ve now got a map, and we can start talking about the relations between regions of the map.

Can we actually do this? Can we use computers to map things like genre and point of view? Yes, to coin a phrase, we can. The truth is that you can learn a lot about a document just by looking at word frequency. That’s how search engines work, that’s how spam gets filtered out of your e-mail; it’s a well-developed technology. The Stanford Literary Lab suggested a couple of years ago that it would probably work for literary genres as well (see Pamphlet 1), and Matt Jockers has more detailed work forthcoming on genre and diction in Macroanalysis.

There are basically three steps to the process. First, get a training set of a thousand or so examples and tag the categories you want to recognize: poetry or prose, fiction or nonfiction, first- or third-person narration. Then, identify features (usually words) that turn out to provide useful clues about those categories. There are a lot of ways of doing this automatically. Personally, I use a Wilcoxon test to identify words that are consistently common or uncommon in one class relative to others. Finally, train classifiers using those features. I use what’s known as an “ensemble” strategy where you train multiple classifiers and they all contribute to the final result. Each of the classifiers individually uses an algorithm called “naive Bayes,” which I’m not going to explain in detail here; let’s just say that collectively, as a group, they’re a little less “naive” than they are individually — because they’re each relying on slightly different sets of clues.

Confusion matrix from an ensemble of naive Bayes classifiers. (432 test documents held out from a larger sample of 1356.)

Confusion matrix from an ensemble of naive Bayes classifiers. (432 test documents held out from a larger sample of 1356.)

How accurate does this end up being? This confusion matrix gives you a sense. Let me underline that this is work in progress. If I were presenting finished results I would need to run this multiple times and give you an average value. But these are typical results. Here I’ve got a corpus of thirteen hundred nineteenth-century volumes. I train a set of classifiers on two-thirds of the corpus, and then test it by using it to classify the other third of the corpus which it hasn’t yet seen. That’s what I mean by saying 432 documents were “held out.” To make the accuracy calculations simple here, I’ve treated these categories as if they were exclusive, but in the long run, we don’t have to do that: documents can belong to more than one at once.

These results are pretty good, but that’s partly because this test corpus didn’t have a lot of miscellaneous collected works in it. In reality you see a lot of volumes that are a mosaic of different genres — the collected poems and plays of so-and-so, prefaced by a prose life of the author, with an index at the back. Obviously if you try to classify that volume as a single unit, it’s going to be a muddle. But I think it’s not going to be hard to use genre classification itself to segment volumes, so that you get the introduction, and the plays, and the lyric poetry sorted out as separate documents. I haven’t done that yet, but it’s the next thing on my agenda.

One complication I have already handled is historical change. Following up a hint from Michael Witmore, I’ve found that it’s useful to train different classifiers for different historical periods. Then when you get an uncategorized document, you can have each classifier make a prediction, and weight those predictions based on the date of the document.

AbsoluteNumberOfFicVolsSo what have I found? First of all, here’s the absolute number of volumes I was able to identify as fiction in HathiTrust’s collection of eighteenth and nineteenth-century English-language books. Instead of plotting individual years, I’ve plotted five-year segments of the timeline. The increase, of course, is partly just an absolute increase in the number of books published.

RatioBut it’s also an increase specifically in fiction. Here I’ve graphed the number of volumes of fiction divided by the total number of volumes in the collection. The proportion of fiction increases in a straightforward linear way. From 1700-1704, when fiction is only about 5% of the collection, to 1895-99, when it’s 25%. People better-versed in book history may already have known that this was a linear trend, but I was a bit surprised. (I should note that I may be slightly underestimating the real numbers before 1750, for reasons explained in the fine print to the earlier graph — basically, it’s hard for the classifier to find examples of a class that is very rare.)

Features consistently more common in first- or third-person narration, ranked by Mann-Whitney-Wilcoxon rho.

Features consistently more common in first- or third-person narration, ranked by Mann-Whitney-Wilcoxon rho.

What about the question we started with — first-person narration? I approach this the same way I approached genre classification. I trained a classifier on 290 texts that were clearly dominated by first- or third-person narration, and used a Wilcoxon test to select features that are consistently more common in one set or in the other.

Now, it might seem obvious what these features are going to be: obviously, we would expect first-person and third-person pronouns to be the most important signal. But I’m allowing the classifier to include whatever features it in practice finds. For instance, terms for domestic relationships like “daughter” and “husband” and the relative pronouns “whose” and “whom” are also consistently more common in third-person contexts, and oddly, numbers seem more common in first-person contexts. I don’t know why that is yet; this is work in progress and there’s more exploration to do. But for right now I haven’t second-guessed the classifier; I’ve used the top sixteen features in both lists whether they “make sense” or not.

170POVAnd this is what I get. The classifier predicts each volume’s probability of belonging to the class “first person.” That can be anywhere between 0 and 1, and it’s often in the middle (Bleak House, for instance, is 0.54). I’ve averaged those values for each five-year interval. I’ve also dropped the first twenty years of the eighteenth century, because the sample size was so low there that I’m not confident it’s meaningful.

Now, there’s a lot more variation in the eighteenth century than in the nineteenth century, partly because the sample size is smaller. But even with that variation it’s clear that there’s significantly more first-person narration in the eighteenth century. About half of eighteenth-century fiction is first-person, and in the nineteenth century that drops down to about a quarter. That’s not something I anticipated. I expected that there might be a gradual decline in the amount of first-person narration, but I didn’t expect this clear and relatively sudden moment of transition. Obviously when you see something you don’t expect, the first question you ask is, could something be wrong with the data? But I can’t see a source of error here. I’ve cleaned up most of the predictable OCR errors in the corpus, and there aren’t more medial s’s in one list than in the other anyway.

And perhaps this picture is after all consistent with our expectations. Eleanor Courtemanche points out that the timing of the shift to third person is consistent with Ian Watt’s account of the development of omniscience (as exemplified, for instance, in Austen). In a quick twitter poll I carried out before announcing the result, Jonathan Hope did predict that there would be a shift from first-person to third-person dominance, though he expected it to be more gradual. Amanda French may have gotten the story up to 1810 exactly right, although she expected first-person to recover in the nineteenth century. I expected a gradual decline of first-person to around 1810, and then a gradual recovery — so I seem to have been completely wrong.

The ratio between raw counts of first- and third-person pronouns in fiction.

The ratio between raw counts of first- and third-person pronouns in fiction.

Much more could be said about this result. You could decide that I’m wrong to let my classifier use things like numbers and relative pronouns as clues about point of view; we could restrict it just to counting personal pronouns. (That won’t change the result very significantly, as you can see in the illustration on the right — which also, incidentally, shows what happens in those first twenty years of the eighteenth century.) But we could refine the method in many other ways. We could exclude pronouns in direct discourse. We could break out epistolary narratives as a separate category.

All of these things should be tried. I’m explicitly not claiming to have solved this problem yet. Remember, the thesis of this talk is that we don’t understand literary history. In fact, I think the point of posing these questions on a large scale is partly to discover how slippery they are. I realize that to many people that will seem like a reason not to project literary categories onto a macroscopic scale. It’s going to be a mess, so — just don’t go there. But I think the mess is the reason to go there. The point is not that computers are going to give us perfect knowledge, but that we’ll discover how much we don’t know.

For instance, I haven’t figured out yet why numbers are common in first-person narrative, but I suspect it might be because there’s a persistent affinity with travel literature. As we follow up leads like that we may discover that we don’t understand point of view itself as well as we assume.

It’s this kind of complexity that will ultimately make classification interesting. It’s not just about sorting things into categories, but about identifying the places where a category breaks down or has changed over time. I would draw an analogy here to a paper on “Gender in Twitter” recently published by a group of linguists. They used machine learning to show that there are not two but many styles of gender performance on Twitter. I think we’ll discover something similar as we explore categories like point of view and genre. We may start out trying to recognize known categories, like first-person narration. But when you sort a large collection into categories, the collection eventually pushes back on your categories as much as the categories illuminate the collection.

Acknowledgments: This research was supported by the Andrew W. Mellon Foundation through “Expanding SEASR Services” and “The Uses of Scale in Literary Study.” Loretta Auvil, Mike Black, and Boris Capitanu helped develop resources for normalizing 18/19c OCR, many of which are public at Jordan Sellers developed the initial training corpus of 19c documents categorized by genre.

What kinds of “topics” does topic modeling actually produce?

I’m having an interesting discussion with Lisa Rhody about the significance of topic modeling at different scales that I’d like to follow up with some examples.

I’ve been doing topic modeling on collections of eighteenth- and nineteenth-century volumes, using volumes themselves as the “documents” being modeled. Lisa has been pursuing topic modeling on a collection of poems, using individual poems as the documents being modeled.

The math we’re using is probably similar. I believe Lisa is using MALLET. I’m using a version of Latent Dirichlet Allocation that I wrote in Java so I could tinker with it.

But the interesting question we’re exploring is this: How does the meaning of LDA change when it’s applied to writing at different scales of granularity? Lisa’s documents (poems) are a typical size for LDA: this technique is often applied to identify topics in newspaper articles, for instance. This is a scale that seems roughly in keeping with the meaning of the word “topic.” We often assume that the topic of written discourse changes from paragraph to paragraph, “topic sentence” to “topic sentence.”

By contrast, I’m using documents (volumes) that are much larger than a paragraph, so how is it possible to produce topics as narrowly defined as this one?

This is based on a generically diverse collection of 1,782 19c volumes, not all of which are plotted here (only the volumes where the topic is most prominent are plotted; the gray line represents an aggregate frequency including unplotted volumes). The most prominent words in this topic are “mother, little, child, children, old, father, poor, boy, young, family.” It’s clearly a topic about familial relationships, and more specifically about parent-child relationships. But there aren’t a whole lot of books in my collection specifically about parent-child relationships! True, the most prominent books in the topic are A. F. Chamberlain’s The Child and Childhood in Folk Thought (1896) and Alice Earl Morse’s Child Life in Colonial Days (1899), but most of the rest of the prominent volumes are novels — by, for instance, Catharine Sedgwick, William Thackeray, Louisa May Alcott, and so on. Since few novels are exclusively about parent-child relations, how can the differences between novels help LDA identify this topic?

The answer is that the LDA algorithm doesn’t demand anything remotely like a one-to-one relationship between documents and topics. LDA uses the differences between documents to distinguish topics — but not by establishing a one-to-one mapping. On the contrary, every document contains a bit of every topic, although it contains them in different proportions. The numerical variation of topic proportions between documents provides a kind of mathematical leverage that distinguishes topics from each other.

The implication of this is that your documents can be considerably larger than the kind of granularity you’re trying to model. As long as the documents are small enough that the proportions between topics vary significantly from one document to the next, you’ll get the leverage you need to discriminate those topics. Thus you can model a collection of volumes and get topics that are not mere “subject classifications” for volumes.

Now, in the comments to an earlier post I also said that I thought “topic” was not always the right word to use for the categories that are produced by topic modeling. I suggested that “discourse” might be better, because topics are not always unified semantically. This is a place where Lisa starts to question my methodology a little, and I don’t blame her for doing so; I’m making a claim that runs against the grain of a lot of existing discussion about “topic modeling.” The computer scientists who invented this technique certainly thought they were designing it to identify semantically coherent “topics.” If I’m not doing that, then, frankly, am I using it right? Let’s consider this example:

This is based on the same generically diverse 19c collection. The most prominent words are “love, life, soul, world, god, death, things, heart, men, man, us, earth.” Now, I would not call that a semantically coherent topic. There is some religious language in there, but it’s not about religion as such. “Love” and “heart” are mixed in there; so are “men” and “man,” “world” and “earth.” It’s clearly a kind of poetic diction (as you can tell from the color of the little circles), and one that increases in prominence as the nineteenth century goes on. But you would be hard pressed to identify this topic with a single concept.

Does that mean topic modeling isn’t working well here? Does it mean that I should fix the system so that it would produce topics that are easier to label with a single concept? Or does it mean that LDA is telling me something interesting about Victorian poetry — something that might be roughly outlined as an emergent discourse of “spiritual earnestness” and “self-conscious simplicity”? It’s an open question, but I lean toward the latter alternative. (By the way, the writers most prominently involved here include Christina Rossetti, Algernon Swinburne, and both Brownings.)

In an earlier comment I implied that the choice between “semantic” topics and “discourses” might be aligned with topic modeling at different scales, but I’m not really sure that’s true. I’m sure that the document size we choose does affect the level of granularity we’re modeling, but I’m not sure how radically it affects it. (I believe Matt Jockers has done some systematic work on that question, but I’ll also be interested to see the results Lisa gets when she models differences between poems.)

I actually suspect that the topics identified by LDA probably always have the character of “discourses.” They are, technically, “kinds of language that tend to occur in the same discursive contexts.” But a “kind of language” may or may not really be a “topic.” I suspect you’re always going to get things like “art hath thy thou,” which are better called a “register” or a “sociolect” than they are a “topic.” For me, this is not a problem to be fixed. After all, if I really want to identify topics, I can open a thesaurus. The great thing about topic modeling is that it maps the actual discursive contours of a collection, which may or may not line up with “concepts” any writer ever consciously held in mind.

Computer scientists don’t understand the technique that way.* But on this point, I think we literary scholars have something to teach them.

On the collective course blog for English 581 I have some other examples of topics produced at a volume level.

*[UPDATE April 3, 2012: Allen Riddell rightly points out in the comments below that Blei’s original LDA article is elegantly agnostic about the significance of the “topics” — which are at bottom just “latent variables.” The word “topic” may be misleading, but computer scientists themselves are often quite careful about interpretation.]

Documentation / open data:
I’ve put the topic model I used to produce these visualizations on github. It’s in the subfolder 19th150topics under folder BrowseLDA. Each folder contains an R script that you run; it then prompts you to load the data files included in the same folder, and allows you to browse around in the topic model, visualizing each topic as you go.

I have also pushed my Java code for LDA up to github. But really, most people are better off with MALLET, which is infinitely faster and has hyperparameter optimization that I haven’t added yet. I wrote this just so that I would be able to see all the moving parts and understand how they worked.

Etymology and nineteenth-century poetic diction; or, singing the shadow of the bitter old sea.

In a couple of recent posts, I argued that fiction and poetry became less similar to nonfiction prose over the period 1700-1900. But because I only measured genres’ distance from each other, I couldn’t say much substantively about the direction of change. Toward the end of the second post, though, I did include a graph that hinted at a possible cause:

The older part of the lexicon (mostly words derived from Old English) gradually became more common in poetry, fiction, and drama than in nonfiction prose. This may not be the only reason for growing differentiation between literary and nonliterary language, but it seems worth exploring. (I should note that function words are excluded from this calculation for reasons explained below; we’re talking about verbs, nouns, and adjectives — not about a rising frequency of “the.”)

Why would genres become etymologically different? Well, it appears that words of different origins are associated in contemporary English with different registers (varieties of language appropriate for a particular social situation). Words of Old English provenance get used more often in speech than in writing — and in writing they are (now) used more often in narrative than in exposition. Moreover, writers learn to produce this distinction as they get older; there isn’t a marked difference for students in elementary school. But as they advance to high school, students learn to use Latinate words in formal expository writing (Bar-Ilan and Berman, 2007).

It’s not hard to see why words of Old English origin might be associated with spoken language. English was for 200 years (1066-1250) almost exclusively spoken. The learned part of the Old English lexicon didn’t survive this period. Instead, when English began to be used again in writing, literate vocabulary was borrowed from French and Latin. As a result, etymological distinctions in English tend also to be distinctions between different social contexts of language use.

Instead of distinguishing “Germanic” and “Latinate” diction here, I have used the first attested date for each word, choosing 1150 as a dividing line because it’s the midpoint of the period when English was not used in writing. Of course pre-1150 words are mostly from Old English, but I prefer to divide based on date-of-entry because that highlights the history of writing rather than a spurious ethnic mystique. (E.g., “Anglo-Saxon is a livelier tongue than Latin, so use Anglo-Saxon words.” — E. B. White.) But the difference isn’t material. You could even just measure the average length of words in different genres and get results that are close to the results I’m graphing here (the correlation between the pre/post-1150 ratio and average word length is often -.85 or lower).

The bottom line is this: using fewer pre-1150 words tends to make diction more overtly literate or learned. Using more of them makes diction less overtly learned, and perhaps closer to speech. It would be dangerous to assume much more: people may think that Old English words are “concrete” — but this isn’t true, for instance, of “word” or “true.”

What can we learn by graphing this aspect of diction?

In the period 1700-1900, I think we learn three interesting things:

    All genres of writing (or at least of prose) seem to acquire an exaggeratedly “literate” diction in the course of the eighteenth century.

    Poetry and fiction reverse that process in the nineteenth century, and develop a diction that is markedly less learned than other kinds of writing — or than their own past history.

    But they do that to different degrees, and as a result the overall story is one of increasing differentiation — not just between “literary” and “nonliterary” diction — but between poetry and fiction as well.

I’m fascinated by this picture. It suggests that the difference linguists have observed between the registers of exposition and narrative may be a relatively recent development. It also raises interesting questions about “literariness” in the eighteenth and nineteenth centuries. For instance, contrast this picture to the standard story where “poetic diction” is an eighteenth-century refinement that the nineteenth century learns to dispense with. Where the etymological dimension of diction is concerned, that story doesn’t fit the evidence. On the contrary, nineteenth-century poetry differentiates itself from the diction of prose in a new and radical way: by the end of the century, the older part of the lexicon has become more than 2.5 times more prominent, on average, in verse than it is in nonfiction prose.

I could speculate about why this happened, but I don’t really know yet. What I can do is give a little more descriptive detail. For instance, if pre-1150 words became more common in 19c poetry … which words, exactly, were involved? One way to approach that is to ask which individual words correlate most strongly with the pre/post-1150 ratio. We might focus especially, for instance, on the rising trend in poetry from the middle of the eighteenth century to 1900. If you sort the top 10,000 words in the poetry collection by correlation with yearly values of the pre/post ratio, you get a list like this:

But the precise correlation coefficients don’t matter as much as an overall picture of diction, so I’ll simply list the hundred words that correlate most strongly with the pre/post-1150 ratio in poetry from 1755 to 1900:

We’re looking mostly at a list of pre-1150 words, with a few exceptions (“face,” “flower,” “surely”). That’s not an inevitable result; if the etymological trend had been a side-effect of something mostly unrelated to linguistic register (say, a vogue for devotional poetry), then sorting the top 10,000 words by correlation with the trend would reveal a list of words associated with its underlying (religious) cause. But instead we’re seeing a trend that seems to have a coherent sociolinguistic character. That’s not just a feature of the top 100 words: the average pre-1150 word is located 2210 places higher on this list than the average post-1150 word.

It’s not, however, simply a list of common Anglo-Saxon words. The list clearly reflects a particular model of “poetic diction,” although the nature of that model is not easy to describe. It involves an odd mixture of nouns for large natural phenomena (wind, sea, rain, water, moon, sun, star, stars, sunset, sunrise, dawn, morning, days, night, nights) and verbs that express a subjective relation (sang, laughed, dreamed, seeing, kiss, kissed, heard, looked, loving, stricken). [Afterthought: I don’t think we have any Hopkins in our collection, but it sounds like my computer is parodying Gerard Manley Hopkins.] There’s also a bit of explicitly archaic Wardour Street in there (yea, nay, wherein, thereon, fro).

Here, by contrast, are the words at the bottom of the list — the ones that correlate negatively with the pre/post-1150 trend, because they are less common, on average, in years where that trend spikes.

There’s a lot that could be said about this list, but one thing that leaps out is an emphasis on social competition. Pomp, power, superior, powers, boast, bestow, applause, grandeur, taste, pride, refined, rival, fortune, display, genius, merit, talents. This is the language of poems that are not bashful about acknowledging the relationship between “social” distinction and the “arts” “inspired” by the “muse” — a theme entirely missing (or at any rate disavowed) in the other list. So we’re getting a fairly clear picture of a thematic transformation in the concerns of poetry from 1755 to 1900. But these lists are generated strictly by correlation with the unsmoothed year-to-year variation of an etymological trend! Moreover, the lists have themselves an etymological character. There are admittedly a few pre-1150 words in this list of negative correlators (mind, oft, every), but by and large it’s a list of words derived from French or Latin after 1150.

I think the apparent connection between sociolinguistic and thematic issues is the really interesting part of this. It begins to hint that the broader shift in poetic diction (using words from the older part of the lexicon to differentiate poetry from prose) had itself an unacknowledged social rationale — which was to disavow poetry’s connection to cultural distinction, and foreground instead a simplified individual subjectivity. I’m admittedly speculating a little here, and there’s a great deal more that could be said both about poetry and about parallel trends in fiction — but I’ve said enough for one blog post.

A couple of quick final notes. You’re wondering, what about drama?

Our collection of drama in the nineteenth century is actually too sparse to draw any conclusions yet, but there’s the trend line so far, if you’re interested.

You’re also wondering, how were pre- and post-1150 words actually sorted out? I made a list of the 10,500 most common words in the collection, and mined etymologies for them using a web-crawler on I excluded proper nouns, abbreviations, and words that entered English after 1699. I also excluded function words (determiners, prepositions, conjunctions, pronouns, and the verb to be) because as Bar-Ilan and Berman say, “register variation is essentially a matter of choice — of selecting high-level more formal alternatives instead of everyday, colloquial items or vice versa” (15). There is generally no alternative to prepositions, pronouns, etc, so they don’t tell us much about choice. After those exclusions, I had a list of 9,517 words, of which 2,212 entered the language before 1150 and 7,125 after 1149. (The list is available here.)

Finally, I doubt we’ll be so lucky — but if you do cite this blog post, it should be cited as a collective work by Ted Underwood and Jordan Sellers, because the nineteenth-century part of the underlying collection is a product of Jordan’s research.

Laly Bar-Ilan and Ruth A. Berman, “Developing register differentiation: the Latinate-Germanic divide in English,” Linguistics 45 (2007): 1-35.

[UPDATE March 13, 2011: Twitter conversation about this post with Natalia Cecire.]

Literary and nonliterary diction, the sequel.

In my last post, I suggested that literary and nonliterary diction seem to have substantially diverged over the course of the eighteenth and nineteenth centuries. The vocabulary of fiction, for instance, becomes less like nonfiction prose at the same time as it becomes more like poetry.

It’s impossible to interpret a comparative result like this purely as evidence about one side of the comparison. We’re looking at a process of differentiation that involves changes on both sides: the language of nonfiction and fiction, for instance, may both have specialized in different ways.

This post is partly a response to very helpful suggestions I received from commenters, both on this blog and at Language Log. It’s especially a response to Ben Schmidt’s effort to reproduce my results using the Bookworm dataset. I also try two new measures of similarity toward the end of the post (cosine similarity and etymology) which I think interestingly sharpen the original hypothesis.

I have improved my number-crunching in four main ways (you can skip these if you’re bored):

1) In order to normalize corpus size across time, I’m now comparing equal-sized samples. Because the sample sizes are small relative to the larger collection, I have been repeating the sampling process five times and averaging results with a Fisher’s r-to-z transform. Repeated sampling doesn’t make a huge difference, but it slightly reduces noise.

2) My original blog post used 39-year slices of time that overlapped with each other, producing a smoothing effect. Ben Schmidt persuasively suggests that it would be better to use non-overlapping samples, so in this post I’m using non-overlapping 20-year slices of time.

3) I’m now running comparisons on the top 5,000 words in each pair of samples, rather than the top 5,000 words in the collection as a whole. This is a crucial and substantive change.

4) Instead of plotting a genre’s similarity to itself as a flat line of perfect similarity at the top of each plot, I plot self-similarity between two non-overlapping samples selected randomly from that genre. (Nick Lamb at Language Log recommended this approach.) This allows us to measure the internal homogeneity of a genre and use it as a control for the differentiation between genres.

Briefly, I think the central claims I was making in my original post hold up. But the constraints imposed by this newly-rigorous methodology have forced me to focus on nonfiction, fiction, and poetry. Our collections of biography and drama simply aren’t large enough yet to support equal-sized random samples across the whole period.

Here are the results for fiction compared to nonfiction, and nonfiction compared to itself.

This strongly supports the conclusion that fiction was becoming less like nonfiction, but also reveals that the internal homogeneity of the nonfiction corpus was decreasing, especially in the 18c. So some of the differentiation between fiction and nonfiction may be due to the internal diversification of nonfiction prose.

By contrast, here are the results for poetry compared to fiction, and fiction compared to itself.

Poetry and fiction are becoming more similar in the period 1720-1900. I should note that I’ve dropped the first datapoint, for the period 1700-1719, because it seemed to be an outlier. Also, we’re using a smaller sample size here, because my poetry collection won’t support 1 million word samples across the whole period. (We have stripped the prose introduction and notes from volumes of poetry, so they’re small.)

Another question that was raised, both by Ben and by Mark Liberman at Language Log, involved the relationship between “diction” and “topical content.” The Spearman correlation coefficient gives common and uncommon words equal weight, which means (in effect) that it makes no effort to distinguish style from content.

But there are other ways of contrasting diction. And I thought I might try them, because I wanted to figure out how much of the growing distance between fiction and nonfiction was due simply to the topical differentiation of nonfiction in this period. So in the next graph, I’m comparing the cosine similarity of million-word samples selected from fiction and nonfiction to distinct samples selected from nonfiction. Cosine similarity is a measure that, in effect, gives more weight to common words.

I was surprised by this result. When I get very stable numbers for any variable I usually assume that something is broken. But I ran this twice, and used the same code to make different comparisons, and the upshot is that samples of nonfiction really are very similar to other samples of nonfiction in the same period (as measured by cosine similarity). I assume this is because the growing topical heterogeneity that becomes visible in Spearman’s correlation makes less difference to a measure that focuses on common words. Fiction is much more diverse internally by this measure — which makes sense, frankly, because the most common words can be totally different in first-person and third-person fiction. But — to return to the theme of this post — the key thing is that there’s a dramatic differentiation of fiction and nonfiction in this period. Here, by contrast, are the results for nonfiction and poetry compared to fiction, as well as fiction compared to itself.

This graph is a little wriggly, and the underlying data points are pretty bouncy — because fiction is internally diverse when measured by cosine similarity, and it makes a rather bouncy reference point. But through all of that I think one key fact does emerge: by this measure, fiction looks more similar to nonfiction prose in the eighteenth century, and more similar to poetry in the nineteenth.

There’s a lot more to investigate here. In my original post I tried to identify some of the words that became more common in fiction as it became less like nonfiction. I’d like to run that again, in order to explain why fiction and poetry became more similar to each other. But I’ll save that for another day. I do want to offer one specific metric that might help us explain the differentiation of “literary” and “nonliterary” diction: the changing etymological character of the vocabulary in these genres.

Measuring the ratio of “pre-1150” to “post-1150” words is roughly like measuring the ratio of “Germanic” to “Latinate” diction, except that there are a number of pre-1150 words (like “school” and “wall”) that are technically “Latinate.” So this is essentially a way of measuring the relative “familiarity” or “informality” of a genre (Bar-Ilan and Berman 2007). (This graph is based on the top 10k words in the whole collection. I have excluded proper nouns, words that entered the language after 1699, and stopwords — determiners, pronouns, conjunctions, and prepositions.)

I think this graph may help explain why we have the impression that literary language became less specialized in this period. It may indeed have become more informal — perhaps even closer to the spoken language. But in doing so it became more distinct from other kinds of writing.

I’d like to thank everyone who responded to the original post: I got a lot of good ideas for collection development as well as new ways of slicing the collection. Katherine Harris, for instance, has convinced me to add more women writers to the collection; I’m hoping that I can get texts from the Brown Women Writers Project. This may also be a good moment to reiterate that the nineteenth-century part of the collection I’m working with was selected by Jordan Sellers, and these results should be understood as built on his research. Finally, I have put the R code that I used for most of these plots in my Open Data page, but it’s ugly and not commented yet; prettier code will appear later this weekend.

Laly Bar-Ilan and Ruth A. Berman, “Developing register differentiation: the Latinate-Germanic divide in English,” Linguistics 45 (2007): 1-35.

The differentiation of literary and nonliterary diction, 1700-1900.

When you stumble on an interesting problem, the question arises: do you blog the problem itself — or wait until you have a full solution to publish as an article?

In this case, I think the problem is too big to be solved by a single person anyway, so I might as well get it out there where we can all chip away at it. At the end of this post, I include a link to a page where you can also download the data and code I’m using.

When we compare groups of texts, we’re often interested in characterizing the contrast between them. But instead of characterizing the contrast, you could also just measure the distance between categories. For instance, you could generate a list of word frequencies for two genres, and then run a Spearman’s correlation test, to measure the rank-order similarity of their diction.

In isolation, a measure of similarity between two genres is hard to interpret. But if you run the test repeatedly to compare genres at different points in time, the changes can tell you when the diction of the genres becomes more or less similar.

Spearman similarity to nonfiction, measured at 5-year intervals. At each interval, a 39-year chunk of the collection (19 years on either side of the midpoint) is being selected for comparison.

In the graph above, I’ve done that with four genres, in a collection of 3,724 eighteenth- and nineteenth-century volumes (constructed in part by TCP and in part by Jordan Sellers — see acknowledgments), using the 10,000 most frequent words in the collection, excluding proper nouns. The black line at the top is flat, because nonfiction is always similar to itself. But the other lines decline as poetry, drama, and fiction become progressively less similar to nonfiction where word choice is concerned. Unsurprisingly, prose fiction is always more similar to nonfiction than poetry is. But the steady decline in the similarity of all three genres to nonfiction is interesting. Literary histories of this period have tended to pivot on William Wordsworth’s rebellion against a specialized “poetic diction” — a story that would seem to suggest that the diction of 19c poetry should be less different from prose than 18c poetry had been. But that’s not the pattern we’re seeing here: instead it appears that a differentiation was setting in between literary and nonliterary language.

This should be described as a differentiation of “diction” rather than style. To separate style from content (for instance to determine authorship) you need to focus on the frequencies of common words. But when critics discuss “diction,” they’re equally interested, I think, in common and less common words — and that’s the kind of measure of similarity that Spearman’s correlation will give you (Kilgarriff 2001).

The graph above makes it look as though nonfiction was remaining constant while other genres drifted away from it. But we are after all graphing a comparison with two sides. This raises the question: were poetry, fiction, and drama changing relative to nonfiction, or was nonfiction changing relative to them? But of course the answer is “both.”

At each 5-year interval, the Spearman similarity is being measured between the 40-year span surrounding that point and the period 1700-1740.

Here we’re comparing each genre to its own past. The language of nonfiction changes somewhat more rapidly than the language of the other genres, but none of them remain constant. There is no fixed reference point in this world, which is why I’m talking about the “differentiation” of two categories. But even granting that, we might want to pose another skeptical question: when literary genres become less like nonfiction, is that merely a sign of some instability in the definition of “nonfiction”? Did it happen mostly because, say, the nineteenth century started to publish on specialized scientific topics? We can address this question to some extent by selecting a more tightly defined subset of nonfiction as a reference point — say, biographies, letters, and orations.

The Spearman similarities here happen to be generated on the top 5000 words rather than the top 10000, but I have tried both wordsets and it makes very little difference.

Even when we focus on this relatively stable category, we see significant differentiation. Two final skeptical questions need addressing before I try to explain what happened. First, I’ve been graphing results so far as solid lines, because our eyes can’t sort out individual data points for four different variables at once. But a numerically savvy reader will want to see some distributions and error bars before assessing the significance of these results. So here are yearly values for fiction. In some cases these are individual works of fiction, though when there are two or more works of fiction in a single year they have been summed and treated as a group. Each year of fiction is being compared against biographies, letters, and orations for 19 years on either side.

That’s a fairly persuasive trend. You may, however, notice that the Spearman similarities for individual years on this graph are about .1 lower than they were when we graphed fiction as a 39-year moving window. In principle Spearman similarity is independent of corpus size, but it can be affected by the diversity of a corpus. The similarity between two individual texts is generally going to be lower than the similarity between two large and diverse corpora. So could the changes we’ve seen be produced by changes in corpus size? There could be some effect, but I don’t think it’s large enough to explain the phenomenon. [See update at the bottom of this post. The results are in fact even clearer when you keep corpus size constant. -Ed.] The sizes of the corpora for different genres don’t change in a way that would produce the observed decreases in similarity; the fiction corpus, in particular, gets larger as it gets less like nonfiction. Meanwhile, it is at the same time becoming more like poetry. We’re dealing with some factor beyond corpus size.

So how then do we explain the differentiation of literary and nonliterary diction? As I started by saying, I don’t expect to provide a complete answer: I’m raising a question. But I can offer a few initial leads. In some ways it’s not surprising that novels would gradually become less like biographies and letters. The novel began very much as faked biography and faked correspondence. Over the course of the period 1700-1900 the novel developed a sharper generic identity, and one might expect it to develop a distinct diction. But the fact that poetry and drama seem to have experienced a similar shift (together with the fact that literary genres don’t seem to have diverged significantly from each other) begins to suggest that we’re looking at the emergence of a distinctively “literary” diction in this period.

To investigate the character of that diction, we need to compare the vocabulary of genres at many different points. If we just compared late-nineteenth-century fiction to late-nineteenth-century nonfiction, we would get the vocabulary that characterized fiction at that moment, but we wouldn’t know which aspects of it were really new. I’ve done that on the side here, using the Mann-Whitney rho test I described in an earlier post. As you’ll see, the words that distinguish fiction from nonfiction from 1850 to 1900 are essentially a list of pronouns and verbs used to describe personal interaction. But that is true to some extent about fiction in any period. We want to know what aspects of diction had changed.

In other words, we want to find the words that became overrepresented in fiction as fiction was becoming less like nonfiction prose. To find them, I compared fiction to nonfiction at five-year intervals between 1720 and 1880. At each interval I selected a 39-year slice of the collection and ranked words according to the extent to which they were consistently more prominent in fiction than nonfiction (using Mann-Whitney rho). After moving through the whole timeline you end up with a curve for each word that plots the degree to which it is over or under-represented in fiction over time. Then you sort the words to find ones that tend to become more common in fiction as the whole genre becomes less like nonfiction. (Technically, you’re looking for an inverse Pearson’s correlation, over time, between the Mann-Whitney rho for this word and the Spearman’s similarity between genres.) Here’s a list of the top 60 words you find when you do that:

It’s not hard to see that there are a lot of words for emotional conflict here (“horror, courage, confused, eager, anxious, despair, sorrow, dread, agony”). But I would say that emotion is just one aspect of a more general emphasis on subjectivity, ranging from verbs of perception (“listen, listened, watched, seemed, feel, felt”) to explicitly psychological vocabulary (“nerves, mind, unconscious, image, perception”) to questions about the accuracy of perception (“dream, real, sight, blind, forget, forgot, mystery, mistake”). To be sure, there are other kinds of words in the list (“cottage, boy, carriage”). But since we’re looking at a change across a period of 200 years, I’m actually rather stunned by the thematic coherence of the list. For good measure, here are words that became relatively less common in fiction (or more common in nonfiction — that’s the meaning of “relatively”) as the two genres differentiated:

Looking at that list, I’m willing to venture out on a limb and suggest that fiction was specializing in subjectivity while nonfiction was tending to view the world from an increasingly social perspective (“executive, population, colonists, department, european, colonists, settlers, number, individuals, average.”)

Now, I don’t pretend to have solved this whole problem. First of all, the lists I just presented are based on fiction; I haven’t yet assessed whether there’s really a shared “literary diction” that unites fiction with poetry and drama. Jordan and I probably need to build up our collection a bit before we’ll know. Also, the technique I just used to select lists of words looks for correlations across the whole period 1700-1900, so it’s going to select words that have a relatively continuous pattern of change throughout this period. But it’s also entirely possible that “the differentiation of literary and nonliterary diction” was a phenomenon composed of several different, overlapping changes with a smaller “wavelength” on the time axis. So I would say that there’s lots of room here for alternate/additional explanations.

But really, this is a question that does need explanation. Literary scholars may hate the idea of “counting words,” but arguments about a distinctively “literary” language have been central to literary criticism from John Dryden to the Russian Formalists. If we can historicize that phenomenon — if we can show that a systematic distinction between literary and nonliterary language emerged at a particular moment for particular reasons — it’s a result that ought to have significance even for literary scholars who don’t consider themselves digital humanists.

By the way, I think I do know why the results I’m presenting here don’t line up with our received impression that “poetic diction” is an eighteenth-century phenomenon that fades in the 19c. There is a two-part answer. For one thing, part of what we perceive as poetic diction in the 18c is orthography (“o’er”, “silv’ry”). In this collection, I have deliberately normalized orthography, so “silv’ry” is treated as equivalent to “silvery,” and that aspect of “poetic diction” is factored out.

But we may also miss differentiation because we wrongly assume that plain or vivid language cannot be itself a form of specialization. Poetic diction probably did become more accessible in the 19c than it had been in the 18c. But this isn’t the same thing as saying that it became less specialized! A self-consciously plain or restricted diction still counts as a mode of specialization relative to other written genres. More on this in a week or two …

Finally, let me acknowledge that the work I’m doing here is built on a collaborative foundation. Laura Mandell helped me obtain the TCP-ECCO volumes before they were public, and Jordan Sellers selected most of the nineteenth-century collection on which this work is based — something over 1,600 volumes. While Jordan and I were building this collection, we were also in conversation with Loretta Auvil, Boris Capitanu, Tanya Clement, Ryan Heuser, Matt Jockers, Long Le-Khac, Ben Schmidt, and John Unsworth, and were learning from them how to do this whole “text mining” thing. The R/MySQL infrastructure for this is pretty directly modeled on Ben’s. Also, since the work was built on a collaborative foundation, I’m going to try to give back by sharing links to my data and code on this “Open Data” page.

Adam Kilgarriff, “Comparing Corpora,” International Journal of Corpus Linguistics 6.1 (2001): 97-133.

[UPDATE Monday Feb 27th, 7 pm: After reading Ben Schmidt’s comment below, I realized that I really had to normalize corpus size. “Probably not a problem” wasn’t going to cut it. So I wrote a script that samples a million-word corpus for each genre every two years. As long as I was addressing that problem, I figured I would address another one that had been nagging at my conscience. I really ought to be comparing a different wordlist each time I run the comparison. It ought to be the top 5000 words in each pair of corpora that get compared — not the top 5000 words in the collection as a whole.

The first time I ran the improved version I got a cloud of meaningless dots, and for a moment I thought my whole hypothesis about genre had been produced by a ‘loose optical cable.’ Not a good moment. But it was a simple error, and once I fixed it I got results that were actually much clearer than my earlier graphs.

I suppose you could argue that, since document size varies across time, it’s better to select corpora that have a fixed number of documents rather than a fixed word size. I ran the script that way too, and it produces results that are noisier but still unambiguous. The moral of the story is: it’s good to have blog readers who keep you honest and force you to clean up your methodology!]